精英家教网 > 高中数学 > 题目详情
设双曲线C的焦点在y轴上,离心率为
2
,其一个顶点的坐标是(0,1).
(Ⅰ)求双曲线C的标准方程;
(Ⅱ)若直线l与该双曲线交于A、B两点,且A、B的中点为(2,3),求直线l的方程.
(Ⅰ)∵双曲线的离心率为
2
,一个顶点坐标是(0,1),
c
a
=
2
,a=1且焦点在y轴上,
∴c=
2

∵c2=a2+b2
∴b2=3.
∴双曲线的方程为 y2-
1
3
x2=1.
(Ⅱ)设A(x1,y1),B(x2,y2),则x1+x2=4,y1+y2=6,
∵y2-
1
3
x2=1,
∴x12-3y12=-3,x22-3y22=-3,两式作差可得,
4(x1-x2)-18(y1-y2)=0,
∴kAB=
y1-y2
x1-x2
=
2
9

∴直线的方程为y-3=
2
9
(x-2),即2x-9y-23=0.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:
x2
4
+
y2
3
=1
,直线l过点M(m,0).
(Ⅰ)若直线l交y轴于点N,当m=-1时,MN中点恰在椭圆C上,求直线l的方程;
(Ⅱ)如图,若直线l交椭圆C于A,B两点,当m=-4时,在x轴上是否存在点p,使得△PAB为等边三角形?若存在,求出点p坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆M:
x2
a2
+
y2
b2
=1(a>b>0)
经过如下五个点中的三个点:P1(-1,-
2
2
)
,P2(0,1),P3(
1
2
2
2
)
P4(1,
2
2
)
,P5(1,1).
(Ⅰ)求椭圆M的方程;
(Ⅱ)设点A为椭圆M的左顶点,B,C为椭圆M上不同于点A的两点,若原点在△ABC的外部,且△ABC为直角三角形,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直线l:y=x+b与抛物线x2=4y相切于点A.
(1)求实数b的值;
(2)若过抛物线的焦点且平行于直线l的直线l1交抛物线于B,C两点,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(1)已知△ABC的顶点A(0,-1),B(0,1),直线AC,直线BC的斜率之积等于m(m0),求顶点C的轨迹方程,并判断轨迹为何种圆锥曲线.
(2)已知圆M的方程为:(x+1)2+y2=(2a)2(a>0,且a1),定点N(1,0),动点P在圆M上运动,线段PN的垂直平分线与直线MP相交于点Q,求点Q轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的顶点为A1,A2,B1,B2,焦点为F1,F2,|A1B2|=
7
S?A1B1A2B2=2S?B1F1B2F2
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线m过Q(1,1),且与椭圆相交于M,N两点,当Q是MN的中点时,求直线m的方程.
(Ⅲ)设n为过原点的直线,l是与n垂直相交于P点且与椭圆相交于两点A,B的直线,|
OP
|=1
,是否存在上述直线l使以AB为直径的圆过原点?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的离心率为
2
2
,直线l:y=x+2与原点为圆心,以椭圆C的短轴长为直径的圆相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点M(0,2)的直线l1与椭圆C交于G,H两点.设直线l1的斜率k>0,在x轴上是否存在点P(m,0),使得△PGH是以GH为底边的等腰三角形.如果存在,求出实数m的取值范围,如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知F1,F2为椭圆x2+
y2
2
=1
上的两个焦点,A,B是过焦点F1的一条动弦,则△ABF2的面积的最大值为(  )
A.
2
2
B.
2
C.1D.2
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知k∈R,当k的取值变化时,关于x,y的方程4kx-4y=4-k2的直线有无数条,这无数条直线形成了一个直线系,记集合M={(x,y)|4kx-4y=4-k2仅有唯一直线}.
(1)求M中点(x,y)的轨迹方程;
(2)设P={(x,y)|y=2x+a,a为常数},任取C∈M,D∈P,如果|CD|的最小值为
5
,求a的值.

查看答案和解析>>

同步练习册答案