精英家教网 > 高中数学 > 题目详情

 在数列,如果存在非零实数使得对于任意的正整数均成立,那么称为周期数列,其中叫周期,已知周期数列满足,如果,当数列的周期最小时,数列的前2010项的和是________.

 

【答案】

 1340     

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在数列{an}中,如果存在非零常数T,使得am+T=am对于任意的非零自然数m均成立,那么就称数列{an}为周期数列,其中T叫做数列{an}的周期,已知数列{xn}满足xn+1=|xn-xn-1|(n≥2,n∈N),如果x1=1,x2=a(a∈R,a≠0),当数列{xn}的周期最小时,该数列的前2008项和是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

一般地,在数列{an}中,如果存在非零常数T,使得am+T=am对任意正整数m均成立,那么就称{an}为周期数列,其中T叫做数列{an}的周期.已知数列{xn}满足xn+1=|xn-xn-1|(n≥2,n∈N*),如果x1=1,x2=a,(a≤1,a≠0),设S2009为其前2009项的和,则当数列{xn}的周期为3时,S2009=
1339+a
1339+a

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,如果存在非零常数T,使得am+T=am对于任意的非零自然数m均成立,那么就称数列{an}的周期数列,其中T叫做数列{an}的周期.已知周期数列{xn}满足xn+1=|xn-xn-1|(n≥2,n∈N*),且x1=1,x2=a(a∈R,a≠0),当数列{xn}的周期最小时,该数列前2012项和是
1342
1342

查看答案和解析>>

科目:高中数学 来源:2010年山西省太原五中高三下学期五月月考试题数学(理) 题型:填空题

在数列,如果存在非零实数使得对于任意的正整数均成立,那么称为周期数列,其中叫周期,已知周期数列满足,如果,当数列的周期最小时,数列的前2010项的和是________.

查看答案和解析>>

同步练习册答案