精英家教网 > 高中数学 > 题目详情
已知函数
(Ⅰ)求f(x)的最小正周期,并求其单调递增区间;
(Ⅱ)当时,求f(x)的值域.
【答案】分析:(Ⅰ)利用两角和差的正弦公式化简函数f(x)的解析式为2sin(+2x)+2,从而求出函数的最小正周期,再令2kπ-+2x≤2kπ+,k∈z,求出x的范围,即可求得函数的单调增区间.
(Ⅱ)当时,求出+2x的范围,可得sin(+2x) 的范围,从而求得2sin(+2x)+2的范围,即为所求.
解答:解:(Ⅰ)∵函数=cos2x+sin2x+2
=2sin(+2x)+2,
故它的最小正周期等于 =π.
令 2kπ-+2x≤2kπ+,k∈z,可得kπ-≤x≤kπ+,k∈z,
故函数的单调增区间
(Ⅱ)当时,+2x∈[],sin(+2x)∈[-,1],
2sin(+2x)+2∈[1,4],
故函数的值域为[1,4].
点评:本题主要考查两角和差的正弦公式的应用,正弦函数的单调性、周期性、定义域和值域,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源:2012-2013学年山东省临沂市临沭县高三(上)期中数学试卷(理科)(解析版) 题型:解答题

已知函数
(I)求f(x)的值域;
(II)试画出函数f(x)在区间[-1,5]上的图象.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年北京市十一学校高三(上)第五次月考数学试卷(理科)(解析版) 题型:解答题

已知函数
(1)求f(x)的最小正周期;
(2)若将f(x)的图象向右平移个单位,得到函数g(x)的图象,求函数g(x)在区间[0,π]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年湖南省衡阳八中高一(上)期中数学试卷(解析版) 题型:解答题

已知函数
(1)求f(x)的最小正周期;
(2)求使f(x)≥0成立的x的取值集合;
(3)若不等式|f(x)-m|<2在上恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年山东省潍坊市高三(上)12月统考数学试卷(解析版) 题型:解答题

已知函数
(I)求f(x)的单调递增区间;
(II)在△ABC中,三内角A,B,C的对边分别为a,b,c,已知成等差数列,且=9,求a的值.

查看答案和解析>>

科目:高中数学 来源:2008-2009学年湖北省部分重点中学联考高三(上)期中数学试卷(理科)(解析版) 题型:解答题

已知函数
(1)求f(x)的周期和及其图象的对称中心;
(2)在△ABC中,角A、B、C的对边分别是a、b、c,满足(2a-c)cosB=bcosC,求函数f(A)的取值范围.

查看答案和解析>>

同步练习册答案