【题目】设数列的所有项都是不等于的正数,的前项和为,已知点在直线上(其中常数,且)数列,又.
(1)求证数列是等比数列;
(2)如果,求实数的值;
(3)若果存在使得点和都在直线在上,是否存在自然数,当()时,恒成立?若存在,求出的最小值;若不存在,请说明理由.
【答案】(1)证明见解析(2),(3)存在自然数,其最小值为
【解析】
(1)由题意把点,、代入直线,整理后得到,由此说明数列是等比数列;
(2)把化为指数式,结合数列是等比数列可求值,再由在直线上,取求得值;
(3)由,知恒成立等价于恒成立.结合存在,,使得点和都在直线在上,推得是首项为正,公差为的等差数列.再由一定存在自然数,使求解自然数的最小值.
(1)证明:,、都在直线上,
,
即,又,且,
为非零常数,即数列是等比数列;
(2)解:由,得,即,得.
由在直线上,得,
令得,;
(3)解:由,知恒成立等价于恒成立.
存在,,使得点和都在直线在上,
,,即,
又,,可得,
又,,
即是首项为正,公差为的等差数列.
一定存在自然数,使,
即,解得,
,.
存在自然数,其最小值为,使得当时,恒成立.
科目:高中数学 来源: 题型:
【题目】已知四棱锥P-ABCD中,底面ABCD为直角梯形,平面ABCD,且.
(1)求证:平面PBD;
(2)若PB与平面ABCD所成的角为,求二面角D-PC-B的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某人上午7时乘船出发,以匀速海里/小时 从港前往相距50海里的港,然后乘汽车以匀速千米/小时()自港前往相距千米的市,计划当天下午4到9时到达市.设乘船和汽车的所要的时间分别为、小时,如果所需要的经费 (单位:元)
(1)试用含有、的代数式表示;
(2)要使得所需经费最少,求和的值,并求出此时的费用.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】四棱锥S-ABCD的底面为正方形,,AC与BD交于E,M,N分别为SD,SA的中点,.
(1)求证:平面平面SBD;
(2)求直线BD与平面CMN所成角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近年,国家逐步推行全新的高考制度.新高考不再分文理科,某省采用模式,其中语文、数学、外语三科为必考科目,每门科目满分均为分.另外考生还要依据想考取的高校及专业的要求,结合自己的兴趣爱好等因素,在思想政治、历史、地理、物理、化学、生物门科目中自选门参加考试(选),每门科目满分均为分.为了应对新高考,某高中从高一年级名学生(其中男生人,女生人)中,采用分层抽样的方法从中抽取名学生进行调查,其中,女生抽取人.
(1)求的值;
(2)学校计划在高一上学期开设选修中的“物理”和“地理”两个科目,为了了解学生对这两个科目的选课情况,对抽取到的名学生进行问卷调查(假定每名学生在“物理”和“地理”这两个科目中必须选择一个科目且只能选择一个科目),下表是根据调查结果得到的一个不完整的列联表,请将下面的列联表补充完整,并判断是否有的把握认为选择科目与性别有关?说明你的理由;
选择“物理” | 选择“地理” | 总计 | |
男生 | |||
女生 | |||
总计 |
(3)在抽取到的名女生中,按(2)中的选课情况进行分层抽样,从中抽出名女生,再从这名女生中抽取人,设这人中选择“物理”的人数为,求的分布列及期望.附:,
0.05 | 0.01 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市2013年发放汽车牌照12万张,其中燃油型汽车牌照10万张,电动型汽车2万张,为了节能减排和控制总量,从2013年开始,每年电动型汽车牌照按50%增长,而燃油型汽车牌照每一年比上一年减少0.5万张,同时规定一旦某年发放的牌照超过15万张,以后每一年发放的电动车的牌照的数量维持在这一年的水平不变.
(1)记2013年为第一年,每年发放的燃油型汽车牌照数量构成数列,每年发放电动型汽车牌照数为构成数列,完成下列表格,并写出这两个数列的通项公式;
(2)从2013年算起,累计各年发放的牌照数,哪一年开始超过200万张?
. |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,曲线由两个椭圆:和椭圆:组成,当成等比数列时,称曲线为“猫眼曲线”.
(1)若猫眼曲线过点,且的公比为,求猫眼曲线的方程;
(2)对于题(1)中的求猫眼曲线,任作斜率为且不过原点的直线与该曲线相交,交椭圆所得弦的中点为M,交椭圆所得弦的中点为N,求证:为与无关的定值;
(3)若斜率为的直线为椭圆的切线,且交椭圆于点,为椭圆上的任意一点(点与点不重合),求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设单调函数的定义域为,值域为,如果单调函数使得函数的值域也是,则称函数是函数的一个“保值域函数”.已知定义域为的函数,函数与互为反函数,且是的一个“保值域函数”,是的一个“保值域函数”,则__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在上的函数,如果满足:对任意,存在常数,都有成立,则称是上的有界函数,其中称为函数的上界.
(1)设,判断在上是否为有界函数,若是,请说明理由,并写出的所有上界的集合;若不是,也请说明理由;
(2)若函数在上是以为上界的有界函数,求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com