精英家教网 > 高中数学 > 题目详情

【题目】设数列的所有项都是不等于的正数,的前项和为,已知点在直线上(其中常数,且)数列,又.

1)求证数列是等比数列;

2)如果,求实数的值;

3)若果存在使得点都在直线在上,是否存在自然数,当)时,恒成立?若存在,求出的最小值;若不存在,请说明理由.

【答案】(1)证明见解析(2)(3)存在自然数,其最小值为

【解析】

1)由题意把点代入直线,整理后得到,由此说明数列是等比数列;

2)把化为指数式,结合数列是等比数列可求值,再由在直线上,取求得值;

3)由,知恒成立等价于恒成立.结合存在使得点都在直线在上,推得是首项为正,公差为的等差数列.再由一定存在自然数,使求解自然数的最小值.

1)证明:都在直线上,

,又,且

为非零常数,即数列是等比数列;

2)解:由,得,即,得

在直线上,得

得,

3)解:由,知恒成立等价于恒成立.

存在使得点都在直线在上,

,即

,可得

是首项为正,公差为的等差数列.

一定存在自然数,使

,解得

存在自然数,其最小值为,使得当时,恒成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知四棱锥P-ABCD中,底面ABCD为直角梯形,平面ABCD,且.

1)求证:平面PBD

(2)若PB与平面ABCD所成的角为,求二面角D-PC-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某人上午7时乘船出发,以匀速海里/小时港前往相距50海里的港,然后乘汽车以匀速千米/小时()自港前往相距千米的市,计划当天下午4到9时到达市.设乘船和汽车的所要的时间分别为小时,如果所需要的经费 (单位:元)

(1)试用含有的代数式表示

(2)要使得所需经费最少,求的值,并求出此时的费用.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四棱锥S-ABCD的底面为正方形,ACBD交于EMN分别为SDSA的中点,.

1)求证:平面平面SBD

2)求直线BD与平面CMN所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年,国家逐步推行全新的高考制度.新高考不再分文理科,某省采用模式,其中语文、数学、外语三科为必考科目,每门科目满分均为.另外考生还要依据想考取的高校及专业的要求,结合自己的兴趣爱好等因素,在思想政治、历史、地理、物理、化学、生物门科目中自选门参加考试(),每门科目满分均为.为了应对新高考,某高中从高一年级名学生(其中男生人,女生人)中,采用分层抽样的方法从中抽取名学生进行调查,其中,女生抽取.

1)求的值;

2)学校计划在高一上学期开设选修中的物理地理两个科目,为了了解学生对这两个科目的选课情况,对抽取到的名学生进行问卷调查(假定每名学生在物理地理这两个科目中必须选择一个科目且只能选择一个科目),下表是根据调查结果得到的一个不完整的列联表,请将下面的列联表补充完整,并判断是否有的把握认为选择科目与性别有关?说明你的理由;

选择物理

选择地理

总计

男生

女生

总计

3)在抽取到的名女生中,按(2)中的选课情况进行分层抽样,从中抽出名女生,再从这名女生中抽取人,设这人中选择物理的人数为,求的分布列及期望.附:

0.05

0.01

0.005

0.001

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市2013年发放汽车牌照12万张,其中燃油型汽车牌照10万张,电动型汽车2万张,为了节能减排和控制总量,从2013年开始,每年电动型汽车牌照按50%增长,而燃油型汽车牌照每一年比上一年减少05万张,同时规定一旦某年发放的牌照超过15万张,以后每一年发放的电动车的牌照的数量维持在这一年的水平不变.

1)记2013年为第一年,每年发放的燃油型汽车牌照数量构成数列,每年发放电动型汽车牌照数为构成数列,完成下列表格,并写出这两个数列的通项公式;

2)从2013年算起,累计各年发放的牌照数,哪一年开始超过200万张?











查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,曲线由两个椭圆和椭圆组成,当成等比数列时,称曲线猫眼曲线”.

1)若猫眼曲线过点,且的公比为,求猫眼曲线的方程;

2)对于题(1)中的求猫眼曲线,任作斜率为且不过原点的直线与该曲线相交,交椭圆所得弦的中点为M,交椭圆所得弦的中点为N,求证:为与无关的定值;

3)若斜率为的直线为椭圆的切线,且交椭圆于点为椭圆上的任意一点(点与点不重合),求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设单调函数的定义域为,值域为,如果单调函数使得函数的值域也是,则称函数是函数的一个保值域函数.已知定义域为的函数,函数互为反函数,且的一个保值域函数”,的一个保值域函数,则__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在上的函数,如果满足:对任意,存在常数,都有成立,则称上的有界函数,其中称为函数的上界.

1)设,判断上是否为有界函数,若是,请说明理由,并写出的所有上界的集合;若不是,也请说明理由;

2)若函数上是以为上界的有界函数,求实数的取值范围.

查看答案和解析>>

同步练习册答案