精英家教网 > 高中数学 > 题目详情

【题目】双曲线绕坐标原点旋转适当角度可以成为函数的图象,关于此函数有如下四个命题:① 是奇函数;② 的图象过点;③ 的值域是;④ 函数有两个零点;则其中所有真命题的序号为________.

【答案】①②

【解析】

根据双曲线关于坐标原点对称,则旋转后得到的函数的图象也关于原点对称,即有为奇函数;根据双曲线的顶点、渐近线方程可得旋转后的的图象的渐近线,再由对称性可得的图象过;根据的图象按逆时针旋转位于一三象限由图象可得顶点为点,不是极值点,的值域不是,也不是

;分的图象所在的象限讨论,得出的图象与直线没有交点,函数没有零点.

解:双曲线关于坐标原点对称,

可得旋转后得到的函数的图象关于原点对称,

即有为奇函数,故①对;

由双曲线的顶点为,渐近线方程为,

可得的图象的渐近线为,

图象关于直线对称,

可得的图象过.

由对称性可得的图象按逆时针旋转位于三象限;

按顺时针旋转位于二四象限;故②对;

的图象按逆时针旋转位于一三象限由图象可得顶点为点..

不是极值点,的值域不是

的图象按顺时针旋转位于二四象限,由对称性可得的值域也不是

,故③不对;

的图象位于一三象限时,的图象与直线有两个交点,函数有两个零点;

的图象位于二四象限时,的图象与直线没有交点,函数没有零点故④错.

故真命题为:①②

故答案为:①②

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为满足人们的阅读需求,图书馆设立了无人值守的自助阅读区,提倡人们在阅读后将图书分类放回相应区域.现随机抽取了某阅读区500本图书的分类归还情况,数据统计如下(单位:本).

文学类专栏

科普类专栏

其他类专栏

文学类图书

100

40

10

科普类图书

30

200

30

其他图书

20

10

60

1)根据统计数据估计文学类图书分类正确的概率

2)根据统计数据估计图书分类错误的概率

3)假设文学类图书在文学类专栏科普类专栏其他类专栏的数目分别为,其中,当的方差最大时,求的值,并求出此时方差的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为正方形,底面为线段的中点,若为线段上的动点(不含.

1)平面与平面是否互相垂直?如果是,请证明;如果不是,请说明理由;

2)求二面角的余弦值的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,PD⊥平面ABCD,底面ABCD是菱形,∠BAD=60°AB=2PD=OACBD的交点,E为棱PB上一点.

1)证明:平面EAC⊥平面PBD

2)若PD∥平面EAC,求三棱锥P-EAD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面有五个命题:

①函数的最小正周期是

②终边在轴上的角的集合是

③在同一坐标系中,函数的图象和函数的图象有三个公共点;

④把函数的图象向右平移个单位得到的图象;

⑤函数上是减函数;

其中真命题的序号是(  )

A.①②⑤B.①④C.③⑤D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】201911日新修订的个税法正式实施,规定:公民全月工资、薪金所得不超过5000元的部分不必纳税,超过5000元的部分为全月应纳税所得额.此项税款按下表分段累计计算(预扣):

全月应缴纳所得额

税率

不超过3000元的部分

超过3000元至12000元的部分

超过12000元至25000元的部分

国家在实施新个税时,考虑到纳税人的实际情况,实施了《个人所得税税前专项附加扣税暂行办法》,具体如下表:

项目

每月税前抵扣金额(元)

说明

子女教育

1000

一年按12月计算,可扣12000

继续教育

400

一年可扣除4800元,若是进行技能职业教育或者专业技术职业资格教育一年可扣除3600

大病医疗

5000

一年最高抵扣金额为60000

住房贷款利息

1000

一年可扣除12000元,若夫妻双方在同一城市工作,可以选择一方来扣除

住房租金

1500/1000/800

扣除金额需要根据城市而定

赡养老人

2000

一年可扣除24000元,若不是独生子女,子女平均扣除.赡养老人年龄需要在60周岁及以上

老李本人为独生子女,家里有70岁的老人需要赡养,有一个女儿正读高三,他每月还需缴纳住房贷款2734.201911月老李工资,薪金所得为20000元,按照《个人所得税税前专项附加扣税暂行办法》,则老李应缴纳税款(预扣)为______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于函数,给出以下四个命题:(1)当时,单调递减且没有最值;(2)方程一定有实数解;(3)如果方程为常数)有解,则解得个数一定是偶数;(4是偶函数且有最小值.其中假命题的序号是____________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知全集为,定义集合的特征函数为,对于,给出下列四个结论:

1)对任意,有

2)对任意,若,则

3)对任意,有

4)对任意,有

其中,正确的序号是_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的值域是,有下列结论:①当时, ②当时,;③当时, ④当时,.其中结论正确的所有的序号是( )

A.①②B.③④C.②③D.②④

查看答案和解析>>

同步练习册答案