【题目】双曲线绕坐标原点旋转适当角度可以成为函数的图象,关于此函数有如下四个命题:① 是奇函数;② 的图象过点或;③ 的值域是;④ 函数有两个零点;则其中所有真命题的序号为________.
【答案】①②
【解析】
根据双曲线关于坐标原点对称,则旋转后得到的函数的图象也关于原点对称,即有为奇函数;根据双曲线的顶点、渐近线方程可得旋转后的的图象的渐近线,再由对称性可得的图象过或;根据的图象按逆时针旋转位于一三象限由图象可得顶点为点,不是极值点,则的值域不是,也不是
;分的图象所在的象限讨论,得出的图象与直线没有交点,函数没有零点.
解:双曲线关于坐标原点对称,
可得旋转后得到的函数的图象关于原点对称,
即有为奇函数,故①对;
由双曲线的顶点为,渐近线方程为,
可得的图象的渐近线为和,
图象关于直线对称,
可得的图象过或.
由对称性可得的图象按逆时针旋转位于—三象限;
按顺时针旋转位于二四象限;故②对;
的图象按逆时针旋转位于一三象限由图象可得顶点为点或..
不是极值点,则的值域不是;
的图象按顺时针旋转位于二四象限,由对称性可得的值域也不是
,故③不对;
当的图象位于一三象限时,的图象与直线有两个交点,函数有两个零点;
当的图象位于二四象限时,的图象与直线没有交点,函数没有零点故④错.
故真命题为:①②
故答案为:①②
科目:高中数学 来源: 题型:
【题目】为满足人们的阅读需求,图书馆设立了无人值守的自助阅读区,提倡人们在阅读后将图书分类放回相应区域.现随机抽取了某阅读区500本图书的分类归还情况,数据统计如下(单位:本).
文学类专栏 | 科普类专栏 | 其他类专栏 | |
文学类图书 | 100 | 40 | 10 |
科普类图书 | 30 | 200 | 30 |
其他图书 | 20 | 10 | 60 |
(1)根据统计数据估计文学类图书分类正确的概率;
(2)根据统计数据估计图书分类错误的概率;
(3)假设文学类图书在“文学类专栏”、“科普类专栏”、“其他类专栏”的数目分别为,,,其中,,,当,,的方差最大时,求,的值,并求出此时方差的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面为正方形,底面,,为线段的中点,若为线段上的动点(不含).
(1)平面与平面是否互相垂直?如果是,请证明;如果不是,请说明理由;
(2)求二面角的余弦值的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,PD⊥平面ABCD,底面ABCD是菱形,∠BAD=60°,AB=2,PD=,O为AC与BD的交点,E为棱PB上一点.
(1)证明:平面EAC⊥平面PBD;
(2)若PD∥平面EAC,求三棱锥P-EAD的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下面有五个命题:
①函数的最小正周期是;
②终边在轴上的角的集合是;
③在同一坐标系中,函数的图象和函数的图象有三个公共点;
④把函数的图象向右平移个单位得到的图象;
⑤函数在上是减函数;
其中真命题的序号是( )
A.①②⑤B.①④C.③⑤D.②④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年1月1日新修订的个税法正式实施,规定:公民全月工资、薪金所得不超过5000元的部分不必纳税,超过5000元的部分为全月应纳税所得额.此项税款按下表分段累计计算(预扣):
全月应缴纳所得额 | 税率 |
不超过3000元的部分 | |
超过3000元至12000元的部分 | |
超过12000元至25000元的部分 |
国家在实施新个税时,考虑到纳税人的实际情况,实施了《个人所得税税前专项附加扣税暂行办法》,具体如下表:
项目 | 每月税前抵扣金额(元) | 说明 |
子女教育 | 1000 | 一年按12月计算,可扣12000元 |
继续教育 | 400 | 一年可扣除4800元,若是进行技能职业教育或者专业技术职业资格教育一年可扣除3600元 |
大病医疗 | 5000 | 一年最高抵扣金额为60000元 |
住房贷款利息 | 1000 | 一年可扣除12000元,若夫妻双方在同一城市工作,可以选择一方来扣除 |
住房租金 | 1500/1000/800 | 扣除金额需要根据城市而定 |
2000 | 一年可扣除24000元,若不是独生子女,子女平均扣除.赡养老人年龄需要在60周岁及以上 |
老李本人为独生子女,家里有70岁的老人需要赡养,有一个女儿正读高三,他每月还需缴纳住房贷款2734元.若2019年11月老李工资,薪金所得为20000元,按照《个人所得税税前专项附加扣税暂行办法》,则老李应缴纳税款(预扣)为______元.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】关于函数,给出以下四个命题:(1)当时,单调递减且没有最值;(2)方程一定有实数解;(3)如果方程(为常数)有解,则解得个数一定是偶数;(4)是偶函数且有最小值.其中假命题的序号是____________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知全集为,,定义集合的特征函数为,对于,,给出下列四个结论:
(1)对任意,有
(2)对任意,若,则
(3)对任意,有
(4)对任意,有
其中,正确的序号是_____
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的值域是,有下列结论:①当时,; ②当时,;③当时,; ④当时,.其中结论正确的所有的序号是( ).
A.①②B.③④C.②③D.②④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com