精英家教网 > 高中数学 > 题目详情
4.求函数y=sin($\frac{1}{2}$x+$\frac{π}{3}$),x∈[-2π,2π]的单调区间.

分析 将内层函数看作整体,放到正弦函数的增减区间上,解不等式得函数的单调递增减区间;根据k不同,讨论x∈[-2π,2π]的单调区间即可.

解答 解:函数y=sin($\frac{1}{2}$x+$\frac{π}{3}$),
令$-\frac{π}{2}+2kπ≤$$\frac{1}{2}$x+$\frac{π}{3}$$≤\frac{π}{2}+2kπ$,
解得:$-\frac{5π}{3}+4kπ≤$x$≤\frac{π}{3}+4kπ$,k∈Z.
∵x∈[-2π,2π],
∴单调增区间为[$-\frac{5π}{3}$,$\frac{π}{3}$],
令$\frac{π}{2}+2kπ≤$$\frac{1}{2}$x+$\frac{π}{3}$$≤\frac{3π}{2}+2kπ$,
解得:$\frac{π}{3}+4kπ$≤x≤$\frac{7π}{3}+4kπ$,k∈Z.
∵x∈[-2π,2π],
∴单调减区间为[-2π,$-\frac{5π}{3}$]和[$\frac{π}{3}$,2π]
故得x∈[-2π,2π]的单调增区间为[$-\frac{5π}{3}$,$\frac{π}{3}$],减区间为[-2π,$-\frac{5π}{3}$]和[$\frac{π}{3}$,2π]

点评 本题主要考查对三角函数的图象和性质的运用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.设函数f(x)=sin2(x+$\frac{π}{4}$)-cos2(x+$\frac{π}{4}$)(x∈R),则函数f(x)是(  )
A.最小正周期为π的奇函数B.最小正周期为π的偶函数
C.最小正周期为$\frac{π}{2}$的奇函数D.最小正周期为$\frac{π}{2}$的偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数$f(x)=\left\{\begin{array}{l}3x-\frac{1}{2},x<1\\{2^x},x≥1\end{array}\right.$,则$f[f(\frac{1}{2})]$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.执行如图所示的程序框图,则输出m的值为(  )
A.$\frac{1}{2016}$B.$\frac{1}{2017}$C.$\frac{1}{4032}$D.$\frac{1}{4034}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.曲线y=x2的一种参数方程是(  )
A.$\left\{{\begin{array}{l}{x={t^2}}\\{y={t^4}}\end{array}}\right.$B.$\left\{{\begin{array}{l}{x=sint}\\{y={{sin}^2}t}\end{array}}\right.$C.$\left\{{\begin{array}{l}{x=\sqrt{t}}\\{y=t}\end{array}}\right.$D.$\left\{{\begin{array}{l}{x=t}\\{y={t^2}}\end{array}}\right.$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.读程序:

则运行程序后输出结果判断正确的是(  )
A.$S=\frac{100}{101},P=\frac{100}{101}$B.$S=\frac{99}{100},P=\frac{99}{202}$
C.$S=\frac{100}{101},P=\frac{99}{202}$D.$S=\frac{100}{101},P=\frac{99}{100}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列推理是演绎推理的是(  )
A.由 ${a_1}=1,{a_{n+1}}=\frac{a_n}{{1+{a_n}}}$,因为${a_1}=1,{a_2}=\frac{1}{2},{a_3}=\frac{1}{3},{a_4}=\frac{1}{4}$,故有${a_n}=\frac{1}{n}(n∈{N^*})$
B.科学家利用鱼的沉浮原理制造潜艇
C.妲己惑纣王,商灭;西施迷吴王,吴灭;杨贵妃迷唐玄宗,致安史之乱,故曰:“红颜祸水也”
D.《论语•学路》篇中说:“名不正,则言不顺;言不顺,则事不成;事不成,则礼乐不兴;礼乐不兴,则刑罚不中;刑罚不中,则民无所措手足;所以,名不正,则民无所措手足”.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑,如图,网格纸上正方形小格的边长为1,图中粗线画出的是某几何体毛坯的三视图,第一次切削,将该毛坯得到一个表面积最大的长方体,第二次切削沿长方体的对角面刨开,得到两个三棱柱,第三次切削将两个三棱柱分别沿棱和表面的对角线刨开得到两个鳖臑和两个阳马,则阳马与鳖臑的体积之比为(  )
A.3:1B.2:1C.1:1D.1:2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知向量$\overrightarrow{a}$=(2,-4),$\overrightarrow{b}$=(-3,x),$\overrightarrow{c}$=(1,-1),若(2$\overrightarrow{a}$+$\overrightarrow{b}$)⊥$\overrightarrow{c}$,则|$\overrightarrow{b}$|=(  )
A.9B.3C.$\sqrt{109}$D.3$\sqrt{10}$

查看答案和解析>>

同步练习册答案