精英家教网 > 高中数学 > 题目详情
16.设$f(x)={sin^2}x-\sqrt{3}cosxcos({x+\frac{π}{2}})$,则f(x)在$[{0,\frac{π}{2}}]$上的单调递增区间为[0,$\frac{π}{3}$].

分析 根据三角函数的辅助角公式进行化简结合三角函数的性质进行求解即可.

解答 解:$f(x)={sin^2}x-\sqrt{3}cosxcos({x+\frac{π}{2}})$=sin2x+$\sqrt{3}$sinxcosx
=$\frac{1}{2}$(1-cos2x)+$\frac{\sqrt{3}}{2}$sin2x=sin(2x-$\frac{π}{6}$)+$\frac{1}{2}$,
由2kπ-$\frac{π}{2}$≤2x-$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,k∈Z,
得kπ-$\frac{π}{6}$≤x≤kπ+$\frac{π}{3}$,k∈Z,
∵x∈$[{0,\frac{π}{2}}]$,
∴当k=0时,-$\frac{π}{6}$≤x≤$\frac{π}{3}$,
即0≤x≤$\frac{π}{3}$,
即函数f(x)在$[{0,\frac{π}{2}}]$上的单调递增区间为[0,$\frac{π}{3}$],
故答案为:[0,$\frac{π}{3}$].

点评 本题主要考查三角函数图象和性质的考查,利用辅助角公式进行化简是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知△ABC的内角A,B,C的对边分别是a,b,c,且$\frac{tanA+tanB}{tanB}=\frac{2c}{b}$.
(1)求角A的大小;
(2)若$a=2\sqrt{3}$,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数$f(x)=2sin(\frac{π}{2}-x)•sinx+\sqrt{3}$cos2x.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)在$[-\frac{π}{12},\;\frac{π}{6}]$上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.8名象棋选手进行单循环赛(即每两名选手比赛一场).规定两人对局胜者得2分,平局各得1分,负者得0分,并按总得分由高到低进行排序.比赛结束后,8名选手的得分各不相同,且第二名的得分与最后四名选手得分之和相等.则第二名选手的得分是(  )
A.14B.13C.12D.11

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.根据如图所示的伪代码可知,输出的结果为70.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在△ABC中,角A,B,C的对边分别为a,b,c,且sinA+cos2$\frac{B+C}{2}$=1,D为BC上一点,且$\overrightarrow{AD}=\frac{1}{4}\overrightarrow{AB}+\frac{3}{4}\overrightarrow{AC}$.
(1)求sinA的值;
(2)若a=4$\sqrt{2}$,b=5,求AD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,四棱锥P-ABCD中,PA⊥平面ABCD,四边形ABCD为直角梯形,AD∥BC,∠BAD=∠CBA=90°,PA=AB=BC=1,AD=2,E,F,G分别为BC,PD,PC的中点.
(1)求EF与DG所成角的余弦值;
(2)若M为EF上一点,N为DG上一点,是否存在MN,使得MN⊥平面PBC?若存在,求出点M,N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在△ABC中,a=1,b=$\sqrt{3}$,A=30°,则角C=(  )
A.60°B.30°或90°C.30°D.60°或120°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知过点P(1,0)的直线l交圆O:x2+y2=1于A,B两点,$|AB|=\sqrt{2}$,则直线l的方程为x-y-1=0或x+y-1=0.

查看答案和解析>>

同步练习册答案