精英家教网 > 高中数学 > 题目详情
若Sn是公差不为0的等差数列{an}的前n项和,S1,S2,S4成等比数列,且S2=4,设bn=
1
anan+1
,则新数列{bn}的前n项和为
n
2n+1
n
2n+1
分析:设等差数列{an}的公差为d,由已知可解得首项和d可得其通项,进而可得数列{bn}的通项公式,由其特点可用裂项相消法可得结果.
解答:解:设等差数列{an}的公差为d(d≠0)
由等差数列的求和公式可得:S2=2a1+d=4,①
S4=4a1+
4×3
2
d=4a1+6d
=8+4d,
又S1,S2,S4成等比数列,故16=a1(8+4d)   ②
综合①②解得a1=1,d=2,可得an=2n-1
所以bn=
1
anan+1
=
1
(2n-1)(2n+1)
=
1
2
(
1
2n-1
-
1
2n+1
)

故数列{bn}的前n项和为
1
2
1-
1
3
+
1
3
-
1
5
+
1
5
-
1
7
+…+
1
2n-1
-
1
2n+1
)=
n
2n+1

故答案为:
n
2n+1
点评:本题为等差等比数列的综合应用,求对数列的通项并变形为裂项相消的形式是解决问题的关键,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若Sn是公差不为0的等差数列{an}的前n项和,且S1,S2,S4成等比数列.
(Ⅰ)求数列S1,S2,S4的公比.
(Ⅱ)若S2=4,求{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

若Sn是公差不为0的等差数列{an}的前n项和,且S1,S2,S4成等比数列.
(1)求等比数列S1,S2,S4的公比;
(2)若S2=4,求{an}的通项公式;
(3)设bn=
3
anan+1
,Tn是数列{bn}的前n项和,求使得Tn
m
20
对所有n∈N*都成立的最大正整数m.

查看答案和解析>>

科目:高中数学 来源: 题型:

若Sn是公差不为0的等差数列{an}的前n项和,且S1,S2,S4成等比数列.
(1)求等比数列S1,S2,S4的公比; 
(2)若S2=4,求{an}的通项公式;
(3)设bn=
3
anan+1
,Tn是数列{bn}的前n项和,求使得Tn
m
20
对所有n∈N*都成立的最小正整数m.

查看答案和解析>>

科目:高中数学 来源: 题型:

若Sn是公差不为0的等差数列{an}的前n项和,则S1,S2,S4成等比数列.
(1)求数列S1,S2,S4的公比;
(2)若S2=4,求{an}的通项公式;
(3)在(2)条件下,若bn=an-14,求{|bn|}的前n项和Tn

查看答案和解析>>

同步练习册答案