精英家教网 > 高中数学 > 题目详情

(请考生在第22、23两题中任选一题作答,如果多做。则按所做的第一题记分.
(本小题满分10分)选修4-1:几何证明选讲
如图:AB是⊙O的直径,G是AB延长线上的一点,GCD是⊙O的割线,过点G作AG的垂线,交直线AC于点E,交直线AD于点F,过点G作⊙O的切线,切点为H.求证:

(Ⅰ)C、D、F、E四点共圆;
(Ⅱ)GH2=GE·GF.

证明:
(1)连接DB

AB是⊙O的直径∠ACD=∠AFE
C、D、F、E四点共圆┈┈┈┈┈6分
(2) GH=GE·GF┈10分

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义在(0,+∞)上的三个函数f(x)=lnx,g(x)=x2-af(x),h(x)=x-a
x
,且g(x)在x=1处取得极值.
(Ⅰ)求函数g(x)在x=2处的切线方程;
(Ⅱ)求函数h(x)的单调区间;
(Ⅲ)把h(x)对应的曲线C1向上平移6个单位后得到曲线C2,求C2与g(x)对应曲线C3的交点个数,并说明理由.
请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题记分.
作答时,用2B铅笔在答题卡上把所选题目对应的题号涂黑.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•太原模拟)设函数f(x)=a(x+
1
x
)+2lnx,g(x)=x2

(1)若a=
1
2
时,直线l与函数f(x)和函数g(x)的图象相切于同一点,求切线l的方程;
(2)若f(x)在[2,4]内为单调函数,求实数a的取值范围.
说明:请考生在第22、23、24三题中任选一题作答,如果多做,则按所做第一题记分.

查看答案和解析>>

科目:高中数学 来源:2011届河南省焦作市高三期末调研数学理卷 题型:解答题

请考生在第22、23两题中任选一题作答,如果多做,则按所做的第一题记分.
(本小题满分10分)选修4—1:几何证明选讲
如图,⊙O1与⊙O2相交于A、B两点,过点A作⊙O1的切线交⊙O2于点C,过点B作两圆的割线,分别交⊙O1、⊙O2于点D、E,DE与AC相交于点P.
(Ⅰ)求证:AD∥EC;
 (Ⅱ)若AD是⊙O2的切线,且PA=6,PC=2,BD=9,求AD的长.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年吉林省吉林市高三(下)期末数学试卷(文科)(解析版) 题型:解答题

已知定义在(0,+∞)上的三个函数f(x)=lnx,g(x)=x2-af(x),,且g(x)在x=1处取得极值.
(Ⅰ)求函数g(x)在x=2处的切线方程;
(Ⅱ)求函数h(x)的单调区间;
(Ⅲ)把h(x)对应的曲线C1向上平移6个单位后得到曲线C2,求C2与g(x)对应曲线C3的交点个数,并说明理由.
请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题记分.
作答时,用2B铅笔在答题卡上把所选题目对应的题号涂黑.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年河南省焦作市高三期末调研数学理卷 题型:解答题

请考生在第22、23两题中任选一题作答,如果多做,则按所做的第一题记分.

(本小题满分10分)选修4—1:几何证明选讲

如图,⊙O1与⊙O2相交于A、B两点,过点A作⊙O1的切线交⊙O2于点C,过点B作两圆的割线,分别交⊙O1、⊙O2于点D、E,DE与AC相交于点P.

   (Ⅰ)求证:AD∥EC;

   (Ⅱ)若AD是⊙O2的切线,且PA=6,PC=2,BD=9,求AD的长.

 

查看答案和解析>>

同步练习册答案