精英家教网 > 高中数学 > 题目详情
13.已知1≤lg(xy)≤4,-1$≤lg\frac{x}{y}$≤2,则lg$\frac{{x}^{2}}{y}$的取值范围是[-1,5].

分析 由1≤lg(xy)≤4,-1$≤lg\frac{x}{y}$≤2,可得:1≤lgx+lgy≤4,-1≤lgx-lgy≤2,而lg$\frac{{x}^{2}}{y}$=2lgx-lgy,设2lgx-lgy=m(lgx+lgy)+n(lgx-lgy),利用“待定系数法”即可得出.

解答 解:由1≤lg(xy)≤4,-1$≤lg\frac{x}{y}$≤2,可得:1≤lgx+lgy≤4,-1≤lgx-lgy≤2,
而lg$\frac{{x}^{2}}{y}$=2lgx-lgy
设2lgx-lgy=m(lgx+lgy)+n(lgx-lgy),
∴$\left\{\begin{array}{l}{m+n=2}\\{m-n=-1}\end{array}\right.$,
解得m=$\frac{1}{2}$,n=$\frac{3}{2}$.
∴lg$\frac{{x}^{2}}{y}$=2lgx-lgy=$\frac{1}{2}$(lgx+lgy)+$\frac{3}{2}$(lgx-lgy),
∴-1≤$lg\frac{{x}^{2}}{y}$≤5,
故答案为:[-1,5].

点评 本题考查了不等式的性质、对数的运算法则,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.(文) 已知数列{an}的前n项和为Sn,且an=$\frac{1}{(n+1)(n+2)}$,则S2015=$\frac{2015}{4034}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.给出下列四种说法:
(1)函数y=ax(a>0且a≠1)与函数$y={log_a}{a^x}(a>0$且a≠1)的定义域相同;
(2)函数y=x2与函数y=3x的值域相同; 
(3)函数$y=\frac{1}{2}+\frac{1}{{{2^x}-1}}$与函数$y=\frac{{{{(1+{2^x})}^2}}}{{x•{2^x}}}$均是定义在(-∞,0)∪(0,+∞)上的奇函数; 
(4)函数y=(x-1)2与函数y=2x-1在(0,+∞)上都是奇函数.
其中正确说法的序号是(  )
A.(1)(2)B.(1)(3)C.(2)(4)D.(3)(4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设a,b∈R,下列不等式中恒成立的是(  )
A.$a+\frac{1}{a}≥2$B.$\frac{a}{b}+\frac{b}{a}≥2$C.a2+b2>2abD.$\frac{{{a^2}+3}}{{\sqrt{{a^2}+2}}}>2$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知P(x,y)是双曲线$\frac{{x}^{2}}{4}-{y}^{2}$=1上任意一点,F1是双曲线的左焦点,O是坐标原点,则$\overrightarrow{PO}•\overrightarrow{P{F}_{1}}$的最小值是4-2$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图是一个几何体的三视图(侧试图中的弧线是半圆),则该几何体的体积是(  )
A.8+2πB.8+πC.8+$\frac{2}{3}$πD.8+$\frac{4}{3}$π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}的通项公式an=n+1
(1)求证:sin$\frac{π}{a_n}≥\frac{2}{a_n}$;
(2)设数列$\left\{{sin\frac{π}{{{a_n}{a_{n+1}}}}}\right\}$的前n项和为Sn,求证:$\frac{1}{3}<{S_n}<\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,三角形的三个内角A、B、C满足2sinAcosB=sinC,试判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列函数在区间(-1,1)上单调递减的是(  )
A.y=cosxB.y=$\frac{1}{x-0.5}$C.y=-ln(x+1)D.y=x+$\frac{1}{x}$

查看答案和解析>>

同步练习册答案