精英家教网 > 高中数学 > 题目详情
锐角三角形的内角A、B满足tanA-
1
sin2A
=tanB,则有(  )
A.sin2A-cosB=0B.sin2A+cosB=0
C.sin2A-sinB=0D.sin2A+sinB=0
∵tanA-
1
sin2A
=tanB
sinA
cosA
-
1
sin2A
=
sinB
cosB

左边=
2sinA•sinA
2sinA•cosA
-
1
sin2A
=
2sin2A -1
sin2A
=-
cos2A
sin2A
=右边=
sinB
cosB

即:cos2A•cosB+sin2A•sinB=cos(2A-B)=0
又三角形为锐角三角形,得2A-B=90度
sin2A=sin(B+90°)=cosB,从而:sin2A-cosB=0,
故选A
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

锐角三角形的内角A、B满足tanA-
1
sin2A
=tanB,则有(  )
A、sin2A-cosB=0
B、sin2A+cosB=0
C、sin2A-sinB=0
D、sin2A+sinB=0

查看答案和解析>>

科目:高中数学 来源: 题型:

锐角三角形的内角A、B满足=tanB,则有(    )

A.sin2A-cosB=0              B.sin2A+cosB=0

C.sin2A-sinB=0              D.sin2A+sinB=0

查看答案和解析>>

科目:高中数学 来源: 题型:

锐角三角形的内角A、B,满足tanA-=tanB,则有(    )

A.sin2A-cosB=0                                B.sin2A+cosB=0

C.sin2A-sinB=0                                 D.sin2A+sinB=0

查看答案和解析>>

科目:高中数学 来源: 题型:

7.锐角三角形的内角A、B满足tanA-=tanB,则有

(A)sin2A-cosB=0                     (B)sin2A+cosB=0

(C)sin2A-sinB=0                     (D)sin2A+sinB=0

查看答案和解析>>

同步练习册答案