精英家教网 > 高中数学 > 题目详情

【题目】某高三毕业班甲、乙两名同学在连续的8次数学周练中,统计解答题失分的茎叶图如下:

(1)比较这两名同学8次周练解答题失分的均值和方差的大小,并判断哪位同学做解答题相对稳定些;
(2)以上述数据统计甲、乙两名同学失分超过15分的频率作为频率,假设甲、乙两名同学在同一次周练中失分多少互不影响,预测在接下来的2次周练中,甲、乙两名同学失分均超过15分的次数X的分布列和均值.

【答案】
(1)解: = (7+9+11+18+18+16+23+28)=15,

= (7+8+10+15+17+19+21+23)=15,

= [(﹣8)2+(﹣6)2+(﹣4)2+(﹣2)2+(﹣2)2+12+82+132]=44.75,

= [(﹣8)2+(﹣7)2+(﹣5)2+02+22+42+62+82]=32.25,

∵甲、乙两名队员的得分均值相等,甲的方差比乙的方差大,

∴乙同学答题相对稳定些.


(2)解:根据统计结果,在一次周练中,甲和乙失分超过15分的概率分别是

两人失分均超过15分的概率为p1p2=

X的所有可能取值为0,1,2,依题意X~B(2, ),

P(X=0)= =

P(X=1)= =

P(X=2)= =

∴X的分布列为:

X

0

1

2

P

EX=2× =


【解析】(1)分别求出甲、乙两名队员的得分均值和方差,由此能求出结果.(2)X的所有可能取值为0,1,2,依题意X~B(2, ),由此能求出X的分布列和EX.
【考点精析】解答此题的关键在于理解茎叶图的相关知识,掌握茎叶图又称“枝叶图”,它的思路是将数组中的数按位数进行比较,将数的大小基本不变或变化不大的位作为一个主干(茎),将变化大的位的数作为分枝(叶),列在主干的后面,这样就可以清楚地看到每个主干后面的几个数,每个数具体是多少,以及对离散型随机变量及其分布列的理解,了解在射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn,X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设集合A={x|x2-3x+2=0},B={x|x2+(a-1)x+a2-5=0}.

(1)若A∩B={2},求实数a的值;

(2)若A∪B=A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆、抛物线的焦点均在轴上, 的中心和的顶点均为原点,且椭圆经过点, ,抛物线过点.

Ⅰ)求的标准方程;

Ⅱ)请问是否存在直线满足条件:

①过的焦点;②与交不同两点且满足.

若存在,求出直线的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=ex-2+e2-x,若实数x1x2满足x1x2x1+x2<4且(x1-2)(x2-2)<0,则下列结论正确的是(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 (a>b>0)的左、右焦点分别为F1 , F2 , 过F1且与x轴垂直的直线交椭圆于A、B两点,直线AF2与椭圆的另一个交点为C,若△ABF2的面积是△BCF2的面积的2倍,则椭圆的离心率为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PPD//平面MACPA=PD=,AB=4.

(I)求证:MPB的中点;

(II)求二面角B-PD-A的大小;

(III)求直线MC与平面BDP所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过抛物线L:x2=2py(p>0)的焦点F且斜率为 的直线与抛物线L在第一象限的交点为P,且|PF|=5.

(1)求抛物线L的方程;
(2)与圆x2+(y+1)2=1相切的直线l:y=kx+t交抛物线L于不同的两点M、N,若抛物线上一点C满足 =λ( + )(λ>0),求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在(0,+∞)上的函数fx)满足f(2x)=x2-2x

(Ⅰ)求函数y=fx)的解析式;

(Ⅱ)若关于x的方程fx)=在(1,4)上有实根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在点M(1,f(1))处的切线方程为

求(1)实数a,b的值;

2)函数的单调区间及在区间[0,3]上的最值.

查看答案和解析>>

同步练习册答案