精英家教网 > 高中数学 > 题目详情
17.某班级有50名学生,现要采取系统抽样的方法在这50名学生中抽出5名学生,将这50名学生随机编号1~50号,并分组,第一组1~10号,第二组11~20号,…,第五组41~50号,若在第三组中抽得号码为22的学生,则在第五组中抽得号码为(  )的学生.
A.42B.44C.46D.48

分析 由题设知第五组的号码数比第三组的号码数大(5-3)×10,由此能求出结果.

解答 解:这50名学生随机编号1~50号,并分组,第一组1~10号,第二组11~20号,…,第五组41~50号,
在第三组中抽得号码为22的学生,
则在第五组中抽得号码为22+(5-3)×10=42.
故选:A

点评 本题主要考查系统抽样的应用,根据系统抽样的定义确定组数和每组的样本数是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.等比数列中,首项a1=2,a4=16.
(1)求数列{an}的通项公式.
(2)设数列bn=lgan,证明数列{bn}是等差数列并求前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=(ax-1)ex,a∈R.
(Ⅰ)讨论f(x)的单调区间;
(Ⅱ)当m>n>0时,证明:men+n<nem+m.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)的定义域为R,导函数f'(x)的图象如图所示,则函数f(x)(  )
A.无极大值点,有四个极小值点B.有三个极大值点,两个极小值点
C.有两个极大值点,两个极小值点D.有四个极大值点,无极小值点

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\left\{\begin{array}{l}{-{x}^{3}+{x}^{2},x<1}\\{alnx,x≥1}\end{array}\right.$
(1)当a≥1时,求f(x)在[0,e](e为自然对数的底数)上的最大值;
(2)对任意的正实数a,问:曲线y=f(x)上是否存在两点P,Q,使得△POQ(O为坐标原点)是以O为直角顶点的直角三角形,且此三角形斜边中点在y轴上?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.化简:
(1)$\frac{si{n}^{2}35°-\frac{1}{2}}{cos10°cos80°}$        
(2)($\frac{1}{tan\frac{α}{2}}$-tan$\frac{α}{2}$)•$\frac{1-cos2α}{sin2α}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知定圆M:(x+$\sqrt{3}$)2+y2=16,动圆N过点F($\sqrt{3}$,0)且与圆M相切,记圆心N的轨迹为C直线l过点E(-1,0)且与C于A,B
(Ⅰ)求轨迹C方程;
(Ⅱ)△AOB是否存在最大值,若存在,求出△AOB的最大值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知a,b∈R,那么a+b≠0的一个必要而不充分条件是(  )
A.ab>0B.a>0且b>0C.a+b>3D.a≠0或b≠0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在等腰直角△ABC中,AC=BC,D在AB边上且满足:$\overrightarrow{CD}=t\overrightarrow{CA}+(1-t)\overrightarrow{CB}$,若∠ACD=60°,则t的值为(  )
A.$\frac{{\sqrt{3}-1}}{2}$B.$\sqrt{3}-1$C.$\frac{{\sqrt{3}-\sqrt{2}}}{2}$D.$\frac{{\sqrt{3}+1}}{2}$

查看答案和解析>>

同步练习册答案