精英家教网 > 高中数学 > 题目详情

已知二次函数f (x)=ax2+bx (a,b为常数,且a≠0),满足条件f (1+x)=f (1-x),且方程f (x)=x有等根.
(1)求f (x)的解析式;
(2)是否存在实数m、n(m<n),使f(x)的定义域和值域分别为[m,n]和[3m,3n],如果存在,求出m、n的值,如果不存在,说明理由.

解:(1)∵f(x)满足f(1+x)=f(1-x),∴f(x)的图象关于直线x=1对称.
而二次函数f(x)的对称轴为x=-,∴-=1.①
又f(x)=x有等根,即ax2+(b-1)x=0有等根,∴△=(b-1)2=0.②
由①,②得 b=1,a=-.∴f(x)=-x2+x.
(2)∵f(x)=-x2+x=-(x-1)2+
如果存在满足要求的m,n,则必需3n≤,∴n≤
从而m<n≤<1,而x≤1,f(x)单调递增,

可解得m=-4,n=0满足要求.
∴存在m=-4,n=0满足要求.
分析:(1)由已知中f (1+x)=f (1-x),可得f(x)的图象关于直线x=1对称,结合方程f (x)=x有等根其△=0,我们可构造关于a,b的方程组,解方程组求出a,b的值,即可得到f (x)的解析式;
(2)由(1)中函数的解析式,我们根据f(x)的定义域和值域分别为[m,n]和[3m,3n],我们易判断出函数在[m,n]的单调性,进而构造出满足条件的方程,解方程即可得到答案.
点评:本题考查的知识点是二次函数的性质,其中(1)的关键是由已知条件构造关于a,b的方程组,(2)的关键是根据函数的值域判断出函数在[m,n]的单调性,进而构造出满足条件的方程.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2+2(m-2)x+m-m2
(I)若函数的图象经过原点,且满足f(2)=0,求实数m的值.
(Ⅱ)若函数在区间[2,+∞)上为增函数,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c(a≠0)的图象过点(0,1),且与x轴有唯一的交点(-1,0).
(Ⅰ)求f(x)的表达式;
(Ⅱ)设函数F(x)=f(x)-kx,x∈[-2,2],记此函数的最小值为g(k),求g(k)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2-16x+q+3.
(1)若函数在区间[-1,1]上存在零点,求实数q的取值范围;
(2)若记区间[a,b]的长度为b-a.问:是否存在常数t(t≥0),当x∈[t,10]时,f(x)的值域为区间D,且D的长度为12-t?请对你所得的结论给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广州一模)已知二次函数f(x)=x2+ax+m+1,关于x的不等式f(x)<(2m-1)x+1-m2的解集为(m,m+1),其中m为非零常数.设g(x)=
f(x)x-1

(1)求a的值;
(2)k(k∈R)如何取值时,函数φ(x)=g(x)-kln(x-1)存在极值点,并求出极值点;
(3)若m=1,且x>0,求证:[g(x+1)]n-g(xn+1)≥2n-2(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知二次函数f(x)的图象与x轴的两交点为(2,0),(5,0),且f(0)=10,求f(x)的解析式.
(2)已知二次函数f(x)的图象的顶点是(-1,2),且经过原点,求f(x)的解析式.

查看答案和解析>>

同步练习册答案