精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)讨论函数的单调区间;

(2)若 恒成立,求的取值范围.

【答案】(1)(2)

【解析】试题分析:(1) 求出函数的导数,通过讨论 的范围, 得增区间, 得减区间; (2)问题转化为讨论 的范围,根据函数的单调性求出 的最小值即可求出 的范围.

试题解析:(1).

(i)当时, ,函数上单调递增;

(ii)当时,令,则

,即,函数单调递增;

,即时,函数单调递减.

综上,当时,函数上单调递增;当时,函数的单调递增区间是,单调递减区间是.

(2)令,由(1)可知,函数的最小值为,所以,即.

恒成立与恒成立等价,

,即,则.

①当时, .(或令,则

上递增,∴,∴上递增,∴.

).

在区间上单调递增,

恒成立.

②当时,令,则

时, ,函数单调递增.

∴存在,使得,故当时, ,即,故函数上单调递减;当时, ,即,故函数上单调递增,

不恒成立,

综上所述, 的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,已知圆的圆心在直线上,且该圆存在两点关于直线对称,又圆与直线相切,过点的动直线与圆相交于两点,的中点,直线相交于点

(1)求圆的方程;

(2)当时,求直线的方程;

(3)是否为定值?如果是,求出其定值;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某车间为了制作某个零件,需从一块扇形的钢板余料(如图1)中按照图2的方式裁剪一块矩形钢板,其中顶点在半径上,顶点在半径上,顶点上, .设,矩形的面积为.

(1)用含的式子表示 的长;

(2)试将表示为的函数;

(3)求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)求函数的单调递增区间;

(Ⅱ)用反证法证明:在上,不存在不同的两点,使得的图象在这两点处的切线相互平行.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆满足:①圆心在第一象限,截轴所得弦长为2;②被轴分成两段圆弧,其弧长的比为;③圆心到直线的距离为.

(Ⅰ)求圆的方程;

(Ⅱ)若点是直线上的动点,过点分别做圆的两条切线,切点分别为 ,求证:直线过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数,若在定义域内存在实数,满足,则称为“局部奇函数”.

为定义在上的“局部奇函数”;

曲线轴交于不同的两点;

为假命题, 为真命题,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,函数

(1)当时,解关于的不等式:

(2)若,已知函数有两个零点,若点 ,其中是坐标原点,证明: 不可能垂直。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个盒子中装有5张编号依次为1、2、3、4、5的卡片,这5 张卡片除号码外完全相同.现进行有放回的连续抽取2 次,每次任意地取出一张卡片.

(1)求出所有可能结果数,并列出所有可能结果;

(2)求事件“取出卡片号码之和不小于7 或小于5”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若图,在正方体中, 分别是的中点.

(1)求证:平面平面

(2)在棱上是存在一点,使得平面,若存在,求的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案