精英家教网 > 高中数学 > 题目详情

【题目】如图,正四面体的各棱长均为2,分别为棱的中点,以为圆心、1为半径,分别在面、面内作弧,并将两弧各分成五等份,分点顺次为以及.一只甲虫欲从点出发,沿四面体表面爬行至点,则其爬行的最短距离为___________

【答案】

【解析】

作两种展开,然后比较.

注意到弧被点分成五段等弧,每段弧对应的中心角各为

分成五段等弧,每段弧对应的中心角也各为.

若将绕线段旋转,使之与共面,

这两段弧均与圆心为、半径为1的圆周重合,

则弧对应的圆心角为,此时,点之间的直线距离为.

若将绕线段旋转,绕线段旋转,使之均与共面,

在所得图形中,弧对应的圆心角为

此时,点之间的直线距离为.

综上,所求最短距离为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(题文)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,ABC所对的边分别是abc,且有bcosC+ccosB=2acosB

(1)求B的大小;

(2)若△ABC的面积是,且a+c=5,求b

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂生产的某种零件的尺寸大致服从正态分布,且规定尺寸为次品,其余的为正品.生产线上的打包机自动把每5件零件打包成1箱,然后进入销售环节,若每销售一件正品可获利50元,每销售一件次品亏损100元.现从生产线生产的零件中抽样20箱做质量分析,作出的频率分布直方图如下:

1)估计生产线生产的零件的次品率及零件的平均尺寸;

2)从生产线上随机取一箱零件,求这箱零件销售后的期望利润及不亏损的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆的圆心为点,圆过点且与被直线截得弦长为.不过原点的直线与点的轨迹交于两点,且

1)求点的轨迹方程;

2)求三角形面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,不过原点的直线与椭圆交于A、B两点.

(1)求面积的最大值.

(2)是否存在椭圆,使得对于椭圆的每一条切线与椭圆均相交,设交于A、B两点,且恰取最大值?若存在,求出该椭圆;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某人在塔的正东方向上的处在与塔垂直的水平面内沿南偏西的方向以每小时千米的速度步行了分钟以后,在点处望见塔的底端在东北方向上,已知沿途塔的仰角的最大值为

1)求该人沿南偏西的方向走到仰角最大时,走了几分钟;

2)求塔的高

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当时,求函数在点处的切线方程;

(2)对于任意的的图象恒在图象的上方,求实数a的取值菹围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体ABCDA1B1C1D1中,MM1分别是棱ADA1D1的中点.

(1)求证:四边形BB1M1M为平行四边形;

(2)求证:∠BMC=∠B1M1C1

查看答案和解析>>

同步练习册答案