精英家教网 > 高中数学 > 题目详情
如图,在四面体中,,点分别是 的中点.

求证:(1)直线
(2)平面
见解析
 EF是的中位线

 .m

练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)如图,三棱柱ABC—A1B1C1中,AA1面ABC,BCAC,BC=AC=2,D为AC的中点。[
(1)求证:AB1//面BDC1
(2)若AA1=3,求二面角C1—BD—C的余弦值;
(3)若在线段AB1上存在点P,使得CP面BDC1,试求AA1的长及点P的位置。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,平面平面,四边形都是直角梯形,

(Ⅰ)证明:四点共面;
(Ⅱ)设,求二面角的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
(注意:在试题卷上作答无效)
四棱锥中,底面为矩形,侧面底面
(Ⅰ)证明:
(Ⅱ)设侧面为等边三角形,求二面角的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知正四棱柱ABCDA1B1C1D1中,底面边长AB=2,侧棱BB1的长为4,过点BB1C的垂线交侧棱CC1于点E,交B1C于点F
(1)求证:A1C⊥平面BDE
(2)求A1B与平面BDE所成角的正弦值。
(3)设F是CC1上的动点(不包括端点C),求证:△DBF是锐角三角形。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,在直角梯形ABCP中,AB=BC=3,AP=7,CD⊥AP,现将沿折线CD折成60°的二面角P—CD—A,设E,F,G分别是PD,PC,BC的中点。
(I)求证:PA//平面EFG;
(II)若M为线段CD上的一个动点,问当M在什么位置时,MF与平面EFG所成角最大。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
某高速公路收费站入口处的安全标识墩如图4所示,墩的上半部分是正四棱锥P-EFGH,下半部分是长方体ABCD-EFGH.图5、图6分别是该标识墩的正(主)视图和俯视图.
(1)请画出该安全标识墩的侧(左)视图;
(2)求该安全标识墩的体积
(3)证明:直线BD平面PEG

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在正三棱柱ABC—A1B1C1中,各棱长都相等,D、E分别为AC1,BB1的中点。(1)求证:DE∥平面A1B1C1;(2)求二面角A1—DE—B1的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在正方体
,求所成角的正弦值。

查看答案和解析>>

同步练习册答案