精英家教网 > 高中数学 > 题目详情

【题目】有甲、乙二人去看望高中数学张老师,期间他们做了一个游戏,张老师的生日是日,张老师把告诉了甲,把告诉了乙,然后张老师列出来如下10个日期供选择: 2月5日,2月7日,2月9日,3月2日,3月7日,5月5日,5月8日,7月2日,7月6日,7月9日.看完日期后,甲说“我不知道,但你一定也不知道”,乙听了甲的话后,说“本来我不知道,但现在我知道了”,甲接着说,“哦,现在我也知道了”.请问张老师的生日是_______

【答案】3月2日

【解析】

甲说“我不知道,但你一定也不知道”,可排除五个日期,乙听了甲的话后,说“本来我不知道,但现在我知道了”,再排除2个日期,由此能求出结果.

甲只知道生日的月份,而给出的每个月都有两个以上的日期,所以甲说“我不知道”,

根据甲说“我不知道,但你一定也不知道”,而5月、7月中8日6日是唯一的,所以5月、7月不正确,乙听了甲的话后,说“本来我不知道,但现在我知道了”,而剩余的5个日期中乙能确定生日,说明一定不是7日,甲接着说,“哦,现在我也知道了”,可排除2月5日2月9日,现在可以得知张老师生日为32.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,四边形ABCDBDEF均为菱形,,且

求证:平面BDEF

求直线AD与平面ABF所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量,函数的最小正周期为

(1)求的单调增区间;

(2)方程;在上有且只有一个解,求实数n的取值范围;

(3)是否存在实数m满足对任意x1∈[-1,1],都存在x2R,使得++m-)+1>fx2)成立.若存在,求m的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂生产某产品的年固定成本为250万元,每生产千件,需另投入成本(万元),若年产量不足千件, 的图像是如图的抛物线,此时的解集为,且的最小值是,若年产量不小于千件, ,每千件商品售价为50万元,通过市场分析,该厂生产的商品能全部售完;

(1)写出年利润(万元)关于年产量(千件)的函数解析式;

(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下给出了4个命题:

1)两个长度相等的向量一定相等;

2)相等的向量起点必相同;

3)若,且,则

4)若向量的模小于的模,则

其中正确命题的个数共有(

A.3 B.2 C.1 D.0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,过的直线交轴正半轴于点,交抛物线于两点,其中点在第一象限.

)求证:以线段为直径的圆与轴相切;

)若,,,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系已知一动圆经过点且在轴上截得的弦长为4,设动圆圆心的轨迹为曲线

1求曲线的方程

2过点作互相垂直的两条直线与曲线交于两点与曲线交于两点线段的中点分别为求证:直线过定点并求出定点的坐标

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数处有极大值,则常数为( )

A. 2或6 B. 2 C. 6 D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形所在的平面与直角梯形所在的平面成的二面角,.

1)求证:

2)在线段上求一点,使锐二面角的余弦值为.

查看答案和解析>>

同步练习册答案