精英家教网 > 高中数学 > 题目详情

【题目】方程的曲线即为函数的图象,对于函数,有如下结论:上单调递减;函数存在零点;函数的值域是R若函数的图象关于原点对称,则函数的图象就是确定的曲线

其中所有正确的命题序号是________.

【答案】①③

【解析】

根据绝对值的定义去绝对值,将方程化简,得到相应函数在各区间上的表达式,由此作出图象,即可即可判断各命题的真假.

时,方程为,此时方程不成立;

时,方程为,即

时,方程为,即

时,方程为,即

作出函数的图象,如图所示:

对于,由图可知,函数在上单调递减,所以正确;

对于,由得,,因为双曲线的渐近线为,所以函数的图象与直线无公共点,因此,函数不存在零点,所以②错误;

对于,由图可知,函数的值域是R,所以正确;

对于④,若函数的图象关于原点对称,则用分别替换可得,

,则函数的图象是确定的曲线,而不是确定的曲线,所以④错误.

综上,正确的为①③.

故答案为:①③.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆与双曲线有相同的焦点,点是曲线的一个公共点,分别是的离心率,若,则的最小值为( )

A. B. 4 C. D. 9

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,过的直线交椭圆两点,若的最大值为5,则b的值为( )

A. 1 B. C. D. 2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,是离心率为的椭圆的左、右焦点,过轴的垂线交椭圆所得弦长为,设是椭圆上的两个动点,线段的中垂线与椭圆交于两点,线段的中点的横坐标为1.

1)求椭圆的方程;

2)求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆)的左、右焦点为,右顶点为,上顶点为.已知

1)求椭圆的离心率;

2)设为椭圆上异于其顶点的一点,以线段为直径的圆经过点,经过原点的直线与该圆相切,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆:的左右焦点分别为,上顶点为.

(Ⅰ)若.

(i)求椭圆的离心率;

(ii)设直线与椭圆的另一个交点为,若的面积为,求椭圆的标准方程;

(Ⅱ)由椭圆上不同三点构成的三角形称为椭圆的内接三角形,当时,若以为直角顶点的椭圆的内接等腰直角三角形恰有3个,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,椭圆经过点.

(1)求椭圆的标准方程;

(2)设点是椭圆上的任意一点,射线与椭圆交于点,过点的直线与椭圆有且只有一个公共点,直线与椭圆交于两个相异点,证明:面积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了引导居民合理用电,国家决定实行合理的阶梯电价,居民用电原则上以住宅为单位(一套住宅为一户).

阶梯级别

第一阶梯

第二阶梯

第三阶梯

月用电范围(度)

(0,210]

(210,400]

某市随机抽取10户同一个月的用电情况,得到统计表如下:

居民用电户编号

1

2

3

4

5

6

7

8

9

10

用电量(度)

53

86

90

124

132

200

215

225

300

410

若规定第一阶梯电价每度0.5元,第二阶梯超出第一阶梯的部分每度0.6元,第三阶梯超出第二阶梯的部分每度0.8元,试计算A居民用电户用电410度时应电费多少元?

现要在这10户家庭中任意选取3户,求取到第二阶梯电量的户数的分布列与期望;

以表中抽到的10户作为样本估计全市的居民用电,现从全市中依次抽取10户,若抽到户用电量为第一阶梯的可能性最大,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某绿色有机水果店中一款有机草莓味道鲜甜,店家每天以每斤元的价格从农场购进适量草莓,然后以每斤元的价格出售,如果当天卖不完,剩下的草莓由果汁厂以每斤元的价格回收.

(1)若水果店一天购进斤草莓,求当天的利润(单位:元)关于当天需求量(单位:斤,)的函数解析式;

(2)水果店记录了天草莓的日需求量(单位:斤),整理得下表:

日需求量

14

15

16

17

18

19

20

频数

14

22

14

16

15

13

6

①假设水果店在这天内每天购进斤草莓,求这天的日利润(单位:元)的平均数;

②若水果店一天购进斤草莓,以天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于元的概率.

查看答案和解析>>

同步练习册答案