精英家教网 > 高中数学 > 题目详情
已知正方体ABCD-A1B1C1D1,O是下底面对角线AC和BD的交点,求证:
(1)B1O∥平面A1DC1
(2)平面A1DC1⊥平面BB1D1D.
考点:平面与平面垂直的判定,直线与平面平行的判定
专题:空间位置关系与距离
分析:(1)设A1C1∩B1D1=O1,连结DO1,由已知条件推导出DOB1O1是平行四边形,由此能证明B1O∥面A1DC1.      
(2)由已知得DD1⊥A1C1,A1C1⊥面B1D1BD,由此能证明平面A1DC1⊥平面BB1D1D.
解答: (本题14分)
证明:(1)设A1C1∩B1D1=O1,连结DO1
∵ABCD-A1B1C1D1是正方体,
∴B1BDD1是平行四边形,
∴B1D1∥BD且B1D1=BD…(3分)
又O1,O分别是B1D1,BD的中点,
∴O1B1∥DO且O1B1=DO,∴DOB1O1是平行四边形…(5分)
∴B1O∥DO1,DO1?面A1DC1,B1O?面A1DC1
∴B1O∥面A1DC1.…(8分)      
(2)∵DD1⊥面A1B1C1D1
∴DD1⊥A1C1…(10分)
又∵A1C1⊥B1D1
∴A1C1⊥面B1D1BD…(12分)
又A1C1?平面A1DC1
∴平面A1DC1⊥平面BB1D1D.…(14分)
点评:本题考查直线与平面平行的证明,考查平面与平面垂直的证明,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知F1,F2为椭圆E的左右焦点,点P(1,
3
2
)为其上一点,且有|PF1|+|PF2|=4
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)过F1的直线l1与椭圆E交于A,B两点,过F2与l1平行的直线l2与椭圆E交于C,D两点,求四边形ABCD的面积SABCD的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD的底面是正方形,PD⊥底面ABCD,点E在棱PB上.
(Ⅰ)求证:平面AEC⊥平面PDB;
(Ⅱ)当PD=
2
AB且E为PB的中点时,求AE与平面PDB所成的角的大小.
(Ⅲ)在(Ⅱ)的条件下,求二面角A-PB-D的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=loga(x+1)-loga(1-x).(a>0且a≠1.)
(1)求f(x)的定义域;
(2)判断f(x)的奇偶性并予以证明;
(3)当0<a<1时,求使f(x)>0的x的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0),A,B是椭圆上的两点,线段AB的垂直平分线与x轴相交于点P(x0,0),求x0的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设M为曲线C上任意一点,F(l,0)为定点,已知点M到直线x=4的距离等于2|MF|.
(Ⅰ)求曲线C的方程;
(Ⅱ)设直线l是圆x2+y2=2的任意一条切线,且与曲线C相交于A、B两点,O为坐标原点.试推断是否存在直线l,使
OA
OB
=1?若存在,求出直线z的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C的顶点为原点,其焦点F(0,c)(c>0)到直线l:x-y-2=0的距离为
3
2
2

(1)求抛物线C的方程;
(2)已知A,B是抛物线C上的两点,过A,B两点分别作抛物线C的切线,两条切线的交点为M,设线段AB的中点为N,证明:存在λ∈R,使得
MN
OF

(3)在(2)的条件下,若抛物线C的切线BM与y轴交于点R,直线AB两点的连线过点F,试求△ABR面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

点P(0,-1)是椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)的一个顶点,C1的长轴是圆C2:x2+y2=4的直径.求椭圆C1的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(1,2),
b
=(cosα,sinα),设
m
=
a
+t
b
(t为实数).
(Ⅰ)若α=
π
4
,求当|
m
|取最小值时实数t的值;
(Ⅱ)若
a
b
,问:是否存在实数t,使得向量
a
-
b
和向量
m
的夹角为
π
4
,若存在,请求出t的值;若不存在,请说明理由.
(Ⅲ)若
a
m
,求实数t的取值范围.

查看答案和解析>>

同步练习册答案