精英家教网 > 高中数学 > 题目详情

【题目】已知函数 .

(Ⅰ)讨论函数的单调区间;

(Ⅱ)若函数处取得极值,对 恒成立,求实数的取值范围.

【答案】(1) 当时, 的单调递减区间是,无单调递增区间;当时, 的单调递减区间是,单调递增区间是 (2)

【解析】试题分析:1a分类讨论确定函数的单调区间;2)由函数处取得极值,确定,对 恒成立即恒成立,构造新函数求最值即可.

试题解析:

(1)①在区间上,

时, 恒成立, 在区间上单调递减;

时,令,在区间上,

,函数单调递减,在区间上,

,函数单调递增.

综上所述:当时, 的单调递减区间是,无单调递增区间;

时, 的单调递减区间是,单调递增区间是

②因为函数处取得极值,

所以,解得,经检验可知满足题意.

由已知,即

恒成立,

易得上单调递减,在上单调递增,

所以,即.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若1路、2路公交车均途经泉港一中校门口,其中1路公交车每10分钟一趟,2路公交车每20分钟一趟,某生去坐这2趟公交车回家,则等车不超过5分钟的概率是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“微信运动”是一个类似计步数据库的公众帐号,用户只需以运动手环或手机协处理器的运动教据为介,然后关注该公众号,就能看见自己与好友每日行走的步数,并在同一排行榜上得以体现,现随机选取朋友圈中的50人记录了他们某一天的走路步数,并将数据整理如下:

规定:人一天行走的步数超过8000步时被系统评定为“积极性”,否则为“懈怠性”.

(1)填写下面列联表(单位:人),并根据列联表判断是否有的把握认为“评定类型与性别有关”;

附:

(2)为了进一步了解“懈怠性”人群中每个人的生活习惯,从步行在的人群中再随机抽取3人,求选中的人中男性人数超过女性人数的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某中学举行的物理知识竞赛中,将三个年级参赛学生的成绩在进行整理后分成5组,绘制出如图所示的须率分布直方图,图中从左到右依次为第一、第二、第三、第四、第五小组.已知第三小组的频数是15.

1)求成绩在50-70分的频率是多少

2)求这三个年级参赛学生的总人数是多少:

3)求成绩在80-100分的学生人数是多少

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高三年级50名学生参加数学竞赛,根据他们的成绩绘制了如图所示的频率分布直方图,已知分数在的矩形面积为

求:分数在的学生人数;

这50名学生成绩的中位数精确到

若分数高于60分就能进入复赛,从不能进入复赛的学生中随机抽取两名,求两人来自不同组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆M的方程为x2(y2)21,直线l的方程为x2y0,点P在直线l上,过点P作圆M的切线PAPB,切点为AB.

()APB60°,试求点P的坐标;

()若P点的坐标为(2,1),过P作直线与圆M交于C,D两点,当CD=时,求直线CD的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点ABCD的坐标分别为A(3,0)B(0,3)C(cosα,sinα),α∈(,).

1)若,求角α的值;

2)若,求的值.

3)若在定义域α∈(,)有最小值,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高科技企业生产产品和产品需要甲、乙两种新型材料.生产一件产品需要甲材料,乙材料,并且需要花费1天时间;生产一件产品需要甲材料,乙材料,也需要1天时间,生产一件产品的利润为1000元,生产一件产品的利润为2000.该企业现有甲、乙材料各,则在不超过120天的条件下,求生产产品、产品的利润之和的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4—4:极坐标与参数方程

在平面直角坐标系中,将曲线 (为参数) 上任意一点经过伸缩变换后得到曲线的图形.以坐标原点为极点,x轴的非负半轴为极轴,取相同的单位长度建立极坐标系,已知直线

Ⅰ)求曲线和直线的普通方程;

Ⅱ)点P为曲线上的任意一点,求点P到直线的距离的最大值及取得最大值时点P的坐标.

查看答案和解析>>

同步练习册答案