精英家教网 > 高中数学 > 题目详情
7.已知Sn是等比数列{an}的前n项和,${a_1}=\frac{1}{20},9{S_3}={S_6}$,设Tn=a1•a2•a3•…•an,则使得Tn取最小值时,n的值为(  )
A.3B.4C.5D.6

分析 由9S3=S6,解得q=2.若使Tn=a1a2a3…an取得最小值,则an=$\frac{1}{20}$•2n-1<1,由此能求出使Tn取最小值的n值.

解答 解:∵{an}是等比数列,∴an=a1qn-1
S3=a1+a1q+a1q2
S6=a1+a1q+a1q2+a1q3+a1q4+a1q5
由9S3=S6,解得q=2.
若使Tn=a1a2a3…an取得最小值,
则an<1,
∵a1=$\frac{1}{20}$,∴$\frac{1}{20}$•2n-1<1,
解得n<6,n∈N*
∴使Tn取最小值的n值为5.
故答案为:5.

点评 本题考查使得等比数列的前n项积Tn取最小值时n的值的求法,是中档题,解题时要认真审题,注意等比数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.设函数f(x)=xlnx,(x>0).
(1)求函数f(x)的单调区间;
(2)设F(x)=ax2+f'(x),(a∈R),F(x)是否存在极值,若存在,请求出极值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知全集U=R,集合A={x|x<a或x>2-a,(a<1)},集合B={x|$tan(πx-\frac{π}{3})=-\sqrt{3}\}$.
(Ⅰ)求集合∁UA与B;
(Ⅱ)当-1<a≤0时,集合C=(∁UA)∩B恰好有3个元素,求集合C.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.定义在$(0\;,\;\frac{π}{2})$上的函数f(x),f'(x)是它的导函数,且恒有f(x)•tanx+f'(x)<0成立,则(  )
A.$\sqrt{2}f(\frac{π}{3})>f(\frac{π}{4})$B.$\sqrt{3}f(\frac{π}{4})>\sqrt{2}f(\frac{π}{6})$C.$f(\frac{π}{3})>\sqrt{3}f(\frac{π}{6})$D.$\sqrt{3}f(\frac{π}{3})<f(\frac{π}{6})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知直角坐标平面O-XY上的动点P到定点F(1,0)的距离比它到y轴的距离多1,记P点的轨迹为曲线C,则直线l:2x-3y+4=0与曲线C的交点的个数为(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知f(a,b)=ax+by,如果1≤f(1,1)≤2,且-1≤f(1,-1)≤1,试求f(2,1)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知直线l:y=$\sqrt{3}$+1,则直线的倾斜角为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知α、β是两个不同平面,m,n,l是三条不同直线,则下列命题正确的是(  )
A.若m∥α,n⊥β且m⊥n,则α⊥βB.若m?α,n?α,l⊥n,则l⊥α
C.若m∥α,n⊥β且α⊥β,则m∥nD.若l⊥α且l⊥β,则α∥β

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设集合M={x|x2-x-2<0},N={x|x≤k},若M?N,则k的取值范围是(  )
A.(-∞,2]B.[-1,+∞)C.(-1,+∞)D.[2,+∞)

查看答案和解析>>

同步练习册答案