精英家教网 > 高中数学 > 题目详情
函数y=ax-1+2(a>0,且a≠1)的图象恒过点的坐标为(  )
A、(2,2)
B、(2,4)
C、(1,2)
D、(1,3)
考点:指数函数的单调性与特殊点
专题:计算题,函数的性质及应用
分析:由a0=1知,令x-1=0,则ax-1+2=3;从而解出定点.
解答: 解:∵a0=1;
∴令x-1=0,则ax-1+2=3;
故函数y=ax-1+2(a>0,且a≠1)的图象恒过点的坐标为(1,3);
故选D.
点评:本题考查了指数函数的性质应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设变量x,y满足约束条件
x-y+2≤0
x+y-7≤0
x≥1
,则
y
x
的最大值为(  )
A、3
B、6
C、
9
5
D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|
a
|=4,|
b
|=8,
a
b
的夹角为120°,则|2
a
-
b
|=(  )
A、8
3
B、6
3
C、5
3
D、8
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
log
1
2
x
x>0
kx-2x≤0
,若k<0,则函数y=|f(x)|-1的零点个数是(  )
A、1B、4C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对的边分别为a,b,c,已知
cosA
cosB
=
b
a
,且C=
3

(Ⅰ)求角A,B的大小;
(Ⅱ)设函数f(x)=sin(2x+A)-sin2x+cos2x,求函数f(x)的最小正周期及最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是奇函数,且当x≥0时,f(x)=-x2+x,则不等式xf(x)<0的解集为(  )
A、(-∞,-1)∪(0,1)
B、(-1,0)∪(1,+∞)
C、(-1,0)∪(0,1)
D、(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

设命题P:关于x的不等式:|x-4|+|x-3|≥a的解集是R,命题Q:函数y=lg(ax2-2ax+1)的定义域为R,若P或Q为真,P且Q为假,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log 
1
2
x,g(x)=x-1,设h(x)=
f(x),f(x)≥g(x)
g(x),f(x)<g(x)
,则使h(a)≥2成立的a的范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知0<a<2,复数z=a+i(i是虚数单位),则|z|的取值范围是(  )
A、(1,
3
)
B、(1,5)
C、(1,3)
D、(1,
5
)

查看答案和解析>>

同步练习册答案