【题目】将半径都为1的4个钢球完全装入形状为正四面体的容器里,这个正四面体的高的最小值为( )
A.
B.2+
C.4+
D.
【答案】C
【解析】解:由题意知,底面放三个钢球,上再落一个钢球时体积最小. 于是把钢球的球心连接,则又可得到一个棱长为2的小正四面体,则不难求出这个小正四面体的高为 ,
且由正四面体的性质可知:正四面体的中心到底面的距离是高的 ,且小正四面体的中心和正四面体容器的中心应该是重合的,
∴小正四面体的中心到底面的距离是 × = ,正四面体的中心到底面的距离是 +1 (1即小钢球的半径),
所以可知正四棱锥的高的最小值为 ( +1)×4=4+ ,
故选 C.
【考点精析】掌握棱锥的结构特征是解答本题的根本,需要知道侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方.
科目:高中数学 来源: 题型:
【题目】已知圆C:x2+y2﹣4x﹣4y+4=0,点E(3,4).
(1)过点E的直线l与圆交与A,B两点,若AB=2 ,求直线l的方程;
(2)从圆C外一点P(x1 , y1)向该圆引一条切线,切点记为M,O为坐标原点,且满足PM=PO,求使得PM取得最小值时点P的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,有一壁画,最高点A处离地面AO=4m,最低点B处离地面BO=2m,观赏它的C点在过墙角O点与地面成30°角的射线上.
(1)设点C到墙的距离为x,当x= m时,求tanθ的值;
(2)问C点离墙多远时,视角θ最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,AB∥CD,∠ABC=90°,且CD=2,AB=BC=PA=1,PD= .
(1)求三棱锥A﹣PCD的体积;
(2)问:棱PB上是否存在点E,使得PD∥平面ACE?若存在,求出 的值,并加以证明;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在正方体ABCD﹣A1B1C1D1中,点M是平面A1B1C1D1内一点,且BM∥平面ACD1 , 则tan∠DMD1的最大值为( )
A.
B.1
C.2
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知一个几何体的三视图如图所示.
(1)求此几何体的表面积;
(2)在如图的正视图中,如果点A为所在线段中点,点B为顶点,求在几何体侧面上从点A到点B的最短路径的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若正项数列{an}满足: =an+1﹣an(a∈N*),则称此数列为“比差等数列”.
(1)请写出一个“比差等数列”的前3项的值;
(2)设数列{an}是一个“比差等数列”
(i)求证:a2≥4;
(ii)记数列{an}的前n项和为Sn , 求证:对于任意n∈N*,都有Sn> .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知三棱锥A﹣BCD的各个棱长都相等,E,F分别是棱AB,CD的中点,则EF与BC所成的角是( )
A.90°
B.60°
C.45°
D.30°
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com