精英家教网 > 高中数学 > 题目详情
从8名男同学和4名女同学中选出5人组成青年志愿队,按要求各有多少种选法?

(1)至少有一名女同学参加;

(2)至多有两名女同学参加;

(3)男女同学各至少有两名参加.

解:(1)法一:“至少有一名”可分为4种情况:1名,2名,3名,4名女同学参加,而题设要求选出5人,因此其余名额不足部分应由男生填补,故至少有一名女同学参加共有N=CC+CC+CC+CC=736种不同选法.

法二:在整体组合C中去掉不满足题设要求的组合,即N=C-C=736种不同选法.

(2)法一:直接分类求解.共有N=C+CC+CC=672种不同选法.

法二:整体排异求解. 共有N=C-CC-CC=672种不同选法.

(3)可分两类:一类是2男3女,共有CC种不同选法;另一类是3男2女,共有CC种不同选法.根据分类加法计数原理,得符合条件的选法共有CC+CC=448种.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

班主任为了对本班学生的考试成绩进行分析,决定从全班25名女同学,15名男同学中随机抽取一个容量为8的样本进行分析.
(1)如果按性别比例分层抽样,男、女生各抽取多少名才符合抽样要求?
(2)随机抽出8名,他们的数学、物理分数对应如下表:
学生编号 1 2 3 4 5 6 7 8
数学分数x 60 65 70 75 80 85 90 95
物理分数y 72 77 80 84 88 90 93 95
(i)若规定85分以上为优秀,在该班随机调查一名同学,他的数学和物理分数均为优秀的概率是多少?
(ii)根据上表数据,用变量y与x的相关系数或散点图说明物理成绩y与数学成绩x之间线性相关关系的强弱.如果有较强的线性相关关系,求y与x的线性回归方程(系数精确到0.01);如果不具有线性相关关系,说明理由.
参考公式:相关系数r=
n
i=a
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)
2
n
i=1
(yi-
.
y
)2

回归直线的方程是:
y
=bx+a
,其中b=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)2
,a=
.
y
-b
.
x
yi
是与xi对应的回归估计值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•沈阳二模)在一次数学测验后,班级学委对选答题的选题情况进行统计,如下表:
平面几何选讲 极坐标与参数方程 不等式选讲 合计
男同学(人数) 12 4 6 22
女同学(人数) 0 8 12 20
合计 12 12 18 42
(1)在统计结果中,如果把平面几何选讲和极坐标与参数方程称为几何类,把不等式选讲称为代数类,我们可以得到如下2×2列联表:
几何类 代数类 合计
男同学(人数) 16 6 22
女同学(人数) 8 12 20
合计 24 18 42
据此统计你是否认为选做“几何类”或“代数类”与性别有关,若有关,你有多大的把握?
(2)在原统计结果中,如果不考虑性别因素,按分层抽样的方法从选做不同选做题的同学中随机选出7名同学进行座谈.已知这名学委和两名数学科代表都在选做“不等式选讲”的同学中.
①求在这名学委被选中的条件下,两名数学科代表也被选中的概率;
②记抽取到数学科代表的人数为X,求X的分布列及数学期望E(X).
下面临界值表仅供参考:
P(x2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

班主任为了对本班学生的考试成绩进行分析,决定从全班25名女同学,15名男同学中随机抽取一个容量为8的样本进行分析.
(I)如果按性别比例分层抽样,男、女生各抽取多少名才符合抽样要求?
(II)随机抽出8名,他们的数学、物理分数对应如下表:
学生编号 1 2 3 4 5 6 7 8
数学分数x 60 65 70 75 80 85 90 95
物理分数y 72 77 80 84 88 90 93 95
(i)若规定85分以上(包括85分)为优秀,在该班随机调查一名同学,他的数学和物理分数均为优秀的概率是多少?
(ii)根据上表数据,用变量y与x的相关系数或散点图说明物理成绩y与数学成绩x之间线性相关关系的强弱.如果有较强的线性相关关系,求y与x的线性回归方程(系数精确到0.01);如果不具有线性相关关系,说明理由.
参考公式:相关系数r=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)
2
n
i=1
(yi-
.
y
)
2

回归直线的方程是:
?
y
=bx+a
,其中b=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)
2
a=
.
y
-b
.
x
?
y
i
是与xi对应的回归估计值.
参考数据:
.
x
=77.5,
.
y
=84.875
8
i=1
(xi-
.
x
)
2
≈1050
8
i=1
(yi-
.
y
)
2
≈457
8
i=1
(xi-
.
x
)(yi-
.
y
)≈688
1050
≈32.4
457
≈21.4
550
≈23.5

查看答案和解析>>

科目:高中数学 来源: 题型:

现在从男、女共8名学生干部中选出2名男同学和1名女同学分别参加全校“资源”“生态”“环保”三个夏令营活动,已知共有90种不同的方案.那么男、女同学的人数分别是(    )

A.男2人,女6人                         B.男3人,女5人

C.男5人,女4人                         D.男6人,女2人

查看答案和解析>>

同步练习册答案