【题目】某商场销售某种商品的经验表明,该商品每日的销售量(单位:千克)与销售价格(单位:元/千克)满足关系式,其中为常数.已知销售价格为5元/千克时,每日可售出该商品13千克.
(1)求的值;
(2)若该商品的成本为3元/千克,试确定销售价格的值,使商场每日销售该商品所获得的利润最大,并求出最大利润.
【答案】(1)6(2)x=4,46
【解析】
(1)由f(5)=13代入函数的解析式,解关于a的方程,可得a值;
(2)商场每日销售该商品所获得的利润=每日的销售量×销售该商品的单利润,可得日销售量的利润函数为关于x的三次多项式函数,再用求导数的方法讨论函数的单调性,得出函数的极大值点,从而得出最大值对应的x值.
解:(1)因为x=5时,y=13,所以10=13,故a=6,
(2)由(Ⅰ)可知,该商品每日的销售量y
所以商场每日销售该商品所获得的利润为
从而,f′(x)=10[(x﹣6)2+2(x﹣3)(x﹣6)]=30(x﹣6)(x﹣4)
于是,当x变化时,f(x)、f′(x)的变化情况如下表:
x | (3,4) | 4 | (4,6) |
f'(x) | + | 0 | ﹣ |
f(x) | 单调递增 | 极大值46 | 单调递减 |
由上表可得,x=4是函数f(x)在区间(3,6)内的极大值点,也是最大值点.
所以,当x=4时,函数f(x)取得最大值,且最大值等于46
答:当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大.
科目:高中数学 来源: 题型:
【题目】祖暅原理也就是“等积原理”,它是由我国南北朝杰出的数学家祖冲之的儿子祖暅首先提出来的,祖暅原理的内容是:夹在两个平行平面间的两个几何体,被平行于这两个平行平面的平面所截,如果截得两个截面的面积总相等,那么这两个几何体的体积相等.已知,两个平行平面间有三个几何体,分别是三棱锥、四棱锥、圆锥(高度都为),其中:三棱锥的底面是正三角形(边长为),四棱锥的底面是有一个角为的菱形(边长为),圆锥的体积为,现用平行于这两个平行平面的平面去截三个几何体,如果截得的三个截面的面积相等,那么,下列关系式正确的是( )
A. B.
C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校初中部共120名教师,高中部共180名教师,其性别比例如图所示,已知按分层抽样方法得到的工会代表中,高中部女教师有6人,则工会代表中男教师的总人数为________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在直三棱柱中,,,其中为棱上的中点,为棱上且位于点上方的动点.
(1)证明:平面;
(2)若平面与平面所成的锐二面角的余弦值为,求直线与平面所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,给出下列结论:
(1)若对任意,且,都有,则为R上的减函数;
(2)若为R上的偶函数,且在内是减函数, ,则解集为;
(3)若为R上的奇函数,则也是R上的奇函数;
(4)为常数,若对任意的,都有则关于对称.
其中所有正确的结论序号为_________
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com