精英家教网 > 高中数学 > 题目详情
四棱锥底面是菱形,,分别是的中点.

(1)求证:平面⊥平面
(2)上的动点,与平面所成的最大角为,求二面角的正切值.
(1)参考解析;(2)

试题分析:(1)由已知可得直线AE垂直于BC,即可得到AE垂直于AD,又因为PA垂直于AE.所以可得AE垂直于平面PAD.即可得平面要证平面⊥平面.
(2)通过点E作EG垂直于AF,EQ垂直于AC,连结QG即可证得为所求的二面角的平面角.由与平面所成的最大角为.可得AE=AH.即可得EQ,QG的大小.从求得的正切值,即二面角 的正切值.
(1)设菱形ABCD的边长为2a,则AE=
,∴AE⊥BC,又AD||BC, ∴AE⊥AD.∵PA⊥面ABCD, ∴PA⊥AE,AE⊥面PAD, ∴面AEF⊥面PAD.
(2)过E作EQ⊥AC,垂足为Q,过作QG⊥AF,垂足为G,连GE,∵PA⊥面ABCD,∴PA⊥EQ,EQ⊥面PAC,则∠EGQ是二面角E-AF-C的平面角.
过点A作AH⊥PD,连接EH,∵ AE⊥面PAD,∴∠AHE是EH与面PAD所成的最大角.
∵∠AHE=,∴AH=AE=,AH﹒PD=PA﹒AD,2a﹒PA=,PA=2,PC=4a,EQ=,CQ=,GQ=,tan∠EGQ=.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在长方体中,
(1)若点在对角线上移动,求证:
(2)当为棱中点时,求点到平面的距离。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥中,底面的中点, 的中点,.

(1)求证:平面
(2)求与平面成角的正弦值;
(3)设点在线段上,且平面,求实数的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P—ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q为AD的中点,M是棱PC上的点,PA=PD=2,BC=AD=1,CD=.

(1)若点M是棱PC的中点,求证:PA∥平面BMQ;
(2)若二面角M—BQ—C为30°,设PM=tMC,试确定t的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知四棱锥,底面为菱形,
平面分别是的中点.
(1)证明:
(2)若上的动点,与平面所成最大角的正切值为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,正方体中,已知为棱上的动点.

(1)求证:
(2)当为棱的中点时,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知平面α⊥平面β,α∩β=l,点A∈α,A∉l,直线AB∥l,直线AC⊥l,直线m∥α,m∥β,则下列四种位置关系中,不一定成立的是(  )
A.AB∥m B.AC⊥m
C.AB∥β D.AC⊥β

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

平面α∥平面β的一个充分条件是(  )
A.存在一条直线a,a∥α,a∥β
B.存在一条直线a,a?α,a∥β
C.存在两条平行直线a,b,a?α,b?β,a∥β,b∥α
D.存在两条异面直线a,b,a?α,b?β,a∥β,b∥α

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列四个正方体图形中,为正方体的两个顶点,分别为其所在棱的中点,能得出平面的图形的序号是(     )
A.①、③B.①、④C.②、③ D.②、④

查看答案和解析>>

同步练习册答案