精英家教网 > 高中数学 > 题目详情

【题目】如图,已知动直线l过点 ,且与圆O:x2+y2=1交于A、B两点.
(1)若直线l的斜率为 ,求△OAB的面积;
(2)若直线l的斜率为0,点C是圆O上任意一点,求CA2+CB2的取值范围;
(3)是否存在一个定点Q(不同于点P),对于任意不与y轴重合的直线l,都有PQ平分∠AQB,若存在,求出定点Q的坐标;若不存在,请说明理由.

【答案】
(1)解:因为直线l的斜率为 ,所以直线l

则点O到直线l的距离

所以弦AB的长度

所以


(2)解:因为直线l的斜率为0,所以可知

设点C(x,y),则x2+y2=1,

,所以CA2+CB2=4﹣2y,又y∈[﹣1,1],

所以CA2+CB2的取值范围是[2,6]


(3)解:法一:若存在,则根据对称性可知,定点Q在y轴上,设Q(0,t)、又设A(x1,y1)、B(x2,y2),

因直线l不与y轴重合,设直线l

代入圆O得

所以 (*)

若PQ平分∠AQB,则根据角平分线的定义,AQ与BQ的斜率互为相反数

,又

化简可得

代入(*)式得 ,因为直线l任意,故

即t=2,即Q(0,2)

解法二:若存在,则根据对称性可知,定点Q在y轴上,设Q(0,t)、又设A(x1,y1)、B(x2,y2),

因直线l不与y轴重合,设直线l

代入圆O得

所以 (*)

若PQ平分∠AQB,则根据角平分线的几何意义,点A到y轴的距离d1,点B到y轴的距离d2满足 ,即

化简可得

代入(*)式得 ,因为直线l任意,故

即t=2,即Q(0,2)


【解析】(1)因为直线l的斜率为 ,所以直线l ,利用弦长、半径、弦心距的关系,求得弦长及△OAB的高,即可求出面积.(2)因为直线l的斜率为0,所以可知 ,设点C(x,y),则x2+y2=1,又 =4﹣2y,又y∈[﹣1,1],

即可得CA2+CB2的取值范围.(3)法一:若存在,则根据对称性可知,定点Q在y轴上,设Q(0,t)、又设A(x1,y1)、B(x2,y2),因直线l不与y轴重合,设直线l ,代入圆O得 ,所以 (*) 由AQ与BQ的斜率互为相反数,可得 ,即求得t;解法二:若PQ平分∠AQB,则根据角平分线的几何意义,点A到y轴的距离d1,点B到y轴的距离d2满足 ,即 ,化简可得 ,同时求得t.

【考点精析】解答此题的关键在于理解直线与圆的三种位置关系的相关知识,掌握直线与圆有三种位置关系:无公共点为相离;有两个公共点为相交,这条直线叫做圆的割线;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆C: 的上顶点M与左、右焦点F1、F2构成三角形MF1F2面积为 ,又椭圆C的离心率为
(1)求椭圆C的方程;
(2)椭圆C的下顶点为N,过点T(t,2)(t≠0)的直线TM,TN分别与椭圆C交于E,F两点.若△TMN的面积是△TEF的面积的k倍,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设圆上的点A(2,3)关于直线x+2y=0的对称点仍在圆上,且与直线x﹣y+1=0相交的弦长为2 ,求圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在锐角△ABC中,角A、B、C的对边分别为a、b、c,若a2=b2+bc,则 的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足a1= ,an+1= (n∈N*).
(1)设bn= ﹣1,证明:数列{bn}是等比数列,并求数列{an}的通项公式an
(2)记数列{nbn}的前n项和为Tn , 求证:Tn<4.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣2x﹣8,g(x)=2x2﹣4x﹣16,
(1)求不等式g(x)<0的解集;
(2)若对一切x>5,均有f(x)≥(m+2)x﹣m﹣15成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,分别根据下列条件解三角形,其中有两解的是(
A.a=7,b=14,A=30°
B.b=4,c=5,B=30°
C.b=25,c=3,C=150°
D.a= ,b= ,B=60°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2sin(ωx+ )﹣1(ω>0)的图象向右平移 个单位后与原图象重合,则ω的最小值是(
A.6
B.3
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,GH是东西方向的公路北侧的边缘线,某公司准备在GH上的一点B的正北方向的A处建设一仓库,设AB=ykm,并在公路北侧建造边长为xkm的正方形无顶中转站CDEF(其中EF在GH上),现从仓库A向GH和中转站分别修两条道路AB,AC,已知AB=AC+1,且∠ABC=60°。
(1)求y关于x的函数解析式,并求出定义域;
(2)如果中转站四堵围墙造价为10万元/km,两条道路造价为30万元/km,问:x取何值时,该公司建设中转站围墙和两条道路总造价M最低.

查看答案和解析>>

同步练习册答案