精英家教网 > 高中数学 > 题目详情

【题目】将一颗骰子先后抛掷2次,观察向上的点数,求:

(1)两数之和为5的概率;

(2)两数中至少有一个奇数的概率.

【答案】(1);(2)

【解析】

试题分析:()通过列举可发现此问题中含有36个基本事件,而两数之和为5的有(1,4)、(4,1)、(2.3)、(324种,利用古典概型概率计算公式可得概率为;()求出对立面的概率:对立面含的基本事件为(22)、(4,4)、(6,6)、(2,4)、(4,2)、(26)、(6,2)、(4,6)、(64)共9种,所以所求的概率为.

试题解析:将一颗骰子先后抛掷2次,此问题中含有36个等可能基本事件.

(Ⅰ)两数之和为5”为事件A,则事件A中含有4个基本事件,所以

P(A).

答:两数之和为5的概率为. 6

(Ⅱ)两数中至少有一个为奇数为事件B,则事件B两数均为偶数为对立事件,所以P(B)1.

答:两数中至少有一个为奇数的概率为. 12

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四面体ABCD中,AB、BC、BD两两垂直,AB=BC=BD=4,E、F分别为棱BC、AD的中点.

(1)求异面直线AB与EF所成角的余弦值;
(2)求E到平面ACD的距离;
(3)求EF与平面ACD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】经过对K2的统计量的研究,得到了若干个观测值,当K2≈6.706时,我们认为两分类变量AB(  )

A. 67.06%的把握认为AB有关系 B. 99%的把握认为AB有关系

C. 0.010的把握认为AB有关系 D. 没有充分理由说明AB有关系

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学为提升学生的英语学习能力,进行了主题分别为“听”、“说”、“读”、“写”四场竞赛.规定:每场竞赛的前三名得分分别为,且),选手的最终得分为各场得分之和.最终甲、乙、丙三人包揽了每场竞赛的前三名,在四场竞赛中,已知甲最终分为分,乙最终得分为分,丙最终得分为分,且乙在“听”这场竞赛中获得了第一名,则“听”这场竞赛的第三名是(

A. B. C. D. 甲和丙都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某产品的广告费用x与销售额y的统计数据如下表:

广告费用x(万元)

4

2

3

5

销售额y(万元)

49

26

39

54

(1)求根据上表可得线性回归方程=x+

(2) 模型预报广告费用为6万元时销售额为多少

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了了解初三学生女生身高情况,某中学对初三女生身高进行了一次测量,所得数据整理后列出了频率分布表如下:

组 别

频数

频率

[145.5,149.5)

1

0.02

[149.5,153.5)

4

0.08

[153.5,157.5)

20

0.40

[157.5,161.5)

15

0.30

[161.5,165.5)

8

0.16

[165.5,169.5)

m

n

合 计

M

N

(1)求出表中所表示的数;

(2)画出频率分布直方图;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共个,生产一个卫兵需分钟,生产一个骑兵需分钟,生产一个伞兵需分钟,已知总生产时间不超过小时,若生产一个卫兵可获利润元,生产一个骑兵可获利润元,生产一个伞兵可获利润元.

(1)用每天生产的卫兵个数与骑兵个数表示每天的利润(元);

(2)怎么分配生产任务才能使每天的利润最大,最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=cos ,g(x)=exf(x),其中e为自然对数的底数.
(1)求曲线y=g(x)在点(0,g(0))处的切线方程;
(2)若对任意 时,方程g(x)=xf(x)的解的个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求在区间上的最大值;

2)若过点存在3条直线与曲线相切,求t的取值范围;

3)问过点分别存在几条直线与曲线相切?(只需写出结论)

查看答案和解析>>

同步练习册答案