精英家教网 > 高中数学 > 题目详情
18.在圆O中,AB,CD是互相平行的两条弦,直线AE与圆O相切于点A,且与CD的延长线交于点E,求证:AD2=AB•ED.

分析 连接BD,证明△EAD∽△DBA.即可证明AD2=AB•ED.

解答 证明:连接BD,
因为直线AE与圆O相切,所以∠EAD=∠ABD.…(4分)
又因为AB∥CD,所以∠BAD=∠ADE,
所以△EAD∽△DBA.              …(8分)
从而$\frac{ED}{DA}$=$\frac{AD}{BA}$,所以AD2=AB•ED. …(10分)

点评 本题考查三角形相似的判定与性质,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知椭圆E的中心在原点,焦点在坐标轴上,且经过两点M(-$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{3}}{2}$)和N(1,$\frac{\sqrt{2}}{2}$).
(1)求椭圆E的标准方程;
(2)设F为椭圆的右焦点,过点F作斜率为1的直线l交椭圆于AB两点,以AB为直径的圆O交y轴于P、Q两点,劣弧长PQ记为d,求$\frac{d}{|AB|}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.若点A(0,-1),点B在直线y=-3上,点M满足,$\overrightarrow{MA}•\overrightarrow{AB}=\overrightarrow{MB}•\overrightarrow{BA}$,$\overrightarrow{MB}$∥$\overrightarrow{OA}$,点M的轨迹为曲线C.
(Ⅰ)求曲线C的方程;
(Ⅱ)点P为曲线C上的动点,直线l为曲线C在点P处的切线,求O到直线l的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知两定点A(-2,1),B(1,3),动点P在直线x-y+1=0上,当|PA|+|PB|取最小值时,这个最小值为(  )
A.$\sqrt{5}$B.3C.$\sqrt{13}$D.$\sqrt{17}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,这是一个半圆柱与多面体ABB1A1C构成的几何体,平面ABC与半圆柱的下底面共面,且AC⊥BC,P为$\widehat{{A}_{1}{B}_{1}}$上的动点.
(1)证明:PA1⊥平面PBB1
(2)设半圆柱和多面体ABB1A1C的体积分别为V1,V2,且AC=BC,求V1:V2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知PA垂直于矩形ABCD所在平面,PA=3,AB=1,BC=$\sqrt{3}$.
(1)求二面角P-BD-A的正切值;
(2)求二面角B-PD-A的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图,在正三棱锥A-BCD中,E,F分别是AB,BC的中点,EF⊥DE且BC=2,则正三棱锥A-BCD的体积是$\frac{\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图在三棱锥S-ABC中,SC⊥面ABC,AC⊥BC,且SC=AC=BC,求二面角S-AB-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.若存在正实数x,使得不等式$\frac{lnx}{x+1}$≥ln$\frac{kx}{x+1}$成立,求实数k的取值范围.

查看答案和解析>>

同步练习册答案