精英家教网 > 高中数学 > 题目详情
已知抛物线E:x2=4y,直线l过点M(0,2)且与抛物线交于A、B两点,直线OA、OB分别与抛物线的准线l交于C、D.
(1)若点P是抛物线上任意一点,点P在直线l上的射影为Q,求证:PQ=PM;
(2)求证:为定值;
(3)求CD的最小值.

【答案】分析:(1)设P(x+),抛物线E:x2=4y的准线方程l为y=-1.由点P在直线l上的射影为Q,知PQ=+,由M(0,2),知PM==+,由此能够证明PQ=PM.
(2)由题设知直线AB的斜率一定存在,设AB:y=kx+2,由,得x2-4kx-8=0,设A(x1,y1),B(x2,y2),则x1+x2=4k,x1•x2=-8,y1y2=(kx1+2)(kx2+2)=k2x1x2+2k(x1+x2)+4=-8k2+8k2+4=4,由此能够证明为定值.
(3)由A(x1,y1),B(x2,y2),O(0,0),C,D都在直线l:y=-1上,知,D(-),故CD=||===,由此能求出CD的最小值.
解答:解:(1)∵点P是抛物线上任意一点,
∴设P(x+),
抛物线E:x2=4y的准线方程l为y=-1.
∵点P在直线l上的射影为Q,
∴PQ=+
∵M(0,2),∴PM==+
∴PQ=PM.
(2)证明:由题设知直线AB的斜率一定存在,设AB:y=kx+2,
,得x2-4kx-8=0,
设A(x1,y1),B(x2,y2),则
x1+x2=4k,x1•x2=-8,
y1y2=(kx1+2)(kx2+2)=k2x1x2+2k(x1+x2)+4=-8k2+8k2+4=4,
=(x1,y1),=(x2,y2),
=-8+4=-4.
为定值-4.
(3)∵A(x1,y1),B(x2,y2),O(0,0),
∴直线AO:,直线BO:
∵C,D都在直线l:y=-1上,
,D(-),
∴CD=||=
=
==
==2
∴当k=0时,CD取最小值2
点评:本题考查直线与抛物线的位置关系的应用,考查运算求解能力,推理论证能力;考查化归与转化思想.综合性强,难度大,有一定的探索性,对数学思维能力要求较高,是高考的重点.解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线E的顶点在原点,焦点F在y轴正半轴上,抛物线上一点P(m,4)到其准线的距离为5,过点F的直线l依次与抛物线E及圆x2+(y-1)2=1交于A、C、D、B四点.
(1)求抛物线E的方程;
(2)探究|AC|•|BD|是否为定值,若是,求出该定值;若不是,请说明理由;
(3)过点F作一条直线m与直线l垂直,且与抛物线交于M、N两点,求四边形AMBN面积最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线P:x2=2py (p>0).
(Ⅰ)若抛物线上点M(m,2)到焦点F的距离为3.
(ⅰ)求抛物线P的方程;
(ⅱ)设抛物线P的准线与y轴的交点为E,过E作抛物线P的切线,求此切线方程;
(Ⅱ)设过焦点F的动直线l交抛物线于A,B两点,连接AO,BO并延长分别交抛物线的准线于C,D两点,求证:以CD为直径的圆过焦点F.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线E:x2=4y,直线l过点M(0,2)且与抛物线交于A、B两点,直线OA、OB分别与抛物线的准线l0交于C、D.
(1)若点P是抛物线y=
1
6
x2+
1
2
上任意一点,点P在直线l0上的射影为Q,求证:PQ=PM;
(2)求证:
OA
OB
为定值;
(3)求CD的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线E:x2=2py(p>0)的准线方程是y=-
1
2

(1)求抛物线E的方程;
(2)过点F(0,
1
2
)的直线l与抛物线E交于P,Q两点,设N(0,a)(a<0),且
NP
NQ
≥0
恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案