精英家教网 > 高中数学 > 题目详情

等比数列{an}中,a1,a2,a3分别是下表第一、二、三行中的某一个数,且a1,a2,a3中的任何两个数不在下表的同一列.

(1)求数列{an}的通项公式;
(2)若数列{bn}满足:bn=an+(-1)nlnan,求数列{bn}的前n项和Sn·

(1)=2·;(2)详见解析.

解析试题分析:(Ⅰ)此问首先要结合所给列表充分讨论符合要求的所有情况,根据符合的情况进一步分析公比进而求得数列{an}的通项公式;
(Ⅱ)首先要利用第(Ⅰ)问的结果对数列数列{bn}的通项进行化简,然后结合通项的特点,利用分组法进行数列{bn}的前n项和的求解 .
试题解析:解:(1)当时,不合题意
时,当且仅当 , 符合题意
时,不合题意
因此,所以公比q=3
=2·
(2)∵=2·+(2·)=2·+[ln2+(n-1)ln3]
=2·+
∴当n为偶数时,
当n为奇数时, =
考点:1.数列的求和;2.等比数列;3.数列递推式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

是公比为的等比数列,推导的前项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若正项数列满足条件:存在正整数,使得对一切都成立,则称数列级等比数列.
(1)已知数列为2级等比数列,且前四项分别为,求的值;
(2)若为常数),且级等比数列,求所有可能值的集合,并求取最小正值时数列的前项和
(3)证明:为等比数列的充要条件是既为级等比数列,也为级等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

等比数列的各项均为正数,且
(1)求数列的通项公式;
(2)设 求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列,已知).
(1)求数列的通项公式;
(2)求证:对任意为定值;
(3)设为数列的前项和,若对任意,都有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

对任意实数列,定义它的第项为,假设是首项是公比为的等比数列.
(1)求数列的前项和
(2)若.
①求实数列的通项
②证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

数列的通项公式为,等比数列满足
(1)求数列的通项公式;
(2)求数列的前项和
(3)设,求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设an=1+q+q2+…+qn-1(n∈N,q≠±1),An=C n1a1+C n2a2+…+Cnnan,求An(用n和q表示).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an}的前n项和Sn=n2+1,数列{bn}是首项为1,公比为b的等比数列.
(1)求数列{an}的通项公式;
(2)求数列{anbn}的前n项和Tn.

查看答案和解析>>

同步练习册答案