精英家教网 > 高中数学 > 题目详情

已知函数f(x)=alnx-ax-3(a∈R).
(1)求函数f(x)的单调区间;
(2)函数y=f(x)的图象在x=4处的切线的斜率为数学公式,若函数g(x)=数学公式x3+x2[f′(x)+数学公式]在区间(1,3)上不是单调函数,求m的取值范围.

解 (1)f′(x)=(x>0),
①当a>0时,若x∈(0,1),则f′(x)>0;若x∈(1,+∞),则f′(x)<0,
∴当a>0时,f(x)的单调递增区间为(0,1],单调递减区间为[1,+∞);
②当a<0时,若x∈(1,+∞),则f′(x)>0;若x∈(0,1),则f′(x)<0,
∴当a<0时,f(x)的单调递增区间为[1,+∞),单调递减区间为(0,1];
③当a=0时,f(x)=-3,f(x)不是单调函数,无单调区间.
(2)由题意知,f′(4)=-=,得a=-2,则f(x)=-2lnx+2x-3,
∴g(x)==x3+(+2)x2-2x,
∴g′(x)=x2+(m+4)x-2.
∵g(x)在区间(1,3)上不是单调函数,且g′(0)=-2<0,
,即解得
故m的取值范围是(-,-3).
分析:(1)求导数f′(x),利用导数与函数单调性的关系分情况讨论即可.
(2)由切线斜率为,可求出a值,进而求出f(x)、f′(x),因为g(x)在区间(1,3)上不单调,所以g′(x)改变符号,从而得到m所满足的条件.
点评:本题考查了导数与函数单调性的关系,利用导数解决问题的能力,注意数形结合思想的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案