精英家教网 > 高中数学 > 题目详情
11.若直线y=k(x-1)与椭圆$\frac{{x}^{2}}{m}$+$\frac{{y}^{2}}{2}$=1总有公共点,则实数m的取值范围是(  )
A.(0,1)B.[1,+∞)C.(1,2)∪(2,+∞)D.[1,2)∪(2,+∞)

分析 利用直线y=k(x-1)恒过的定点在椭圆$\frac{{x}^{2}}{m}$+$\frac{{y}^{2}}{2}$=1内,计算即得结论.

解答 解:∵直线y=k(x-1)恒过定点P(1,0),
∴直线y=k(x-1)与椭圆$\frac{{x}^{2}}{m}$+$\frac{{y}^{2}}{2}$=1恒有公共点,
即点P(1,0)在椭圆内或椭圆上,
∴$\frac{1}{m}$≤1,即m≥1,
又m≠2,否则$\frac{{x}^{2}}{m}$+$\frac{{y}^{2}}{2}$=1是圆而非椭圆,
∴1≤m<2或m>2,
故选:D.

点评 本题考查直线与椭圆的位置关系,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=Asin(ωx-$\frac{π}{6}$)(其中A,ω为常数,且A>0,ω>0)的部分图象如图所示.
(1)求函数f(x)的解析式;
(2)若f(α+$\frac{π}{6}$)=$\frac{2\sqrt{5}}{5}$,f(β+$\frac{2π}{3}$)=$\frac{3\sqrt{10}}{5}$,且α,β∈(0,$\frac{π}{2}$),求α+β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.有以下4个条件:①$\overrightarrow a=\overrightarrow b$;②|$\overrightarrow{a}$|=|$\overrightarrow{b}$|;③$\overrightarrow a$与$\overrightarrow b$的方向相反;④$\overrightarrow a$与$\overrightarrow b$都是单位向量.其中$\overrightarrow a$∥$\overrightarrow b$的充分不必要条件有①③.(填正确的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知数列{an}是等差数列,前n项和为 Sn且满足a3-a1=4,S3=12.
(1)求数列{an}的通项公式; 
(2)设bn=an•2n-1,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数$f(x)=\sqrt{1-{2^x}}$的定义域为{x|x≤0}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知命题p:“等轴双曲线的渐近线互相垂直”;命题q:“直线l与抛物线C只有一个公共点,则l与C相切”,下列结论正确的是(  )
A.p∧q为真B.p∨q为假C.p∧(¬p)为真D.(¬p)∨q为真

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.“a+b=-2”是“直线x+y=0与圆(x-a)2+(y-b)2=2相切”的(  )
A.既不充分也不必要条件B.必要不充分条件
C.充要条件D.充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知平面向量$\overrightarrow{a}$,$\overrightarrow{b}$,|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=$\sqrt{2}$,|$\overrightarrow{a}$-2$\overrightarrow{b}$|=$\sqrt{5}$,则向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列四个命题:
①“若 xy=0,则x=0且y=0”的逆否命题;
②“若m>2,则不等式x2-2x+m>0的解集为R”;
③若F1、F2是定点,|F1F2|=7,动点M满足|MF1|+|MF2|=7,则M的轨迹是椭圆;
④若{a,b,c}为空间的一组基底,则{a+b,b+c,c+a}构成空间的另一组基底;
其中真命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案