【题目】设集合A={x|ax2+bx+1=0}(a∈R,b∈R),集合B={﹣1,1}.
(1)若BA,求实数a的值;
(2)若A∩B≠,求a2﹣b2+2a的值.
【答案】
(1)解:由于BA,且B={﹣1,1},
而集合A中最多有2个元素,故A={﹣1,1};
由韦达定理得:
(2)解:根据题意,分2种情况讨论:
1°若1∈A,则a+b=﹣1,
所以 a2﹣b2+2a=(a+b)(a﹣b)+2a=﹣(a﹣b)+2a=a+b=﹣1
2°若﹣1∈A,则a﹣b=﹣1,
所以a2﹣b2+2a=(a+b)(a﹣b)+2a=﹣(a+b)+2a=a﹣b=﹣1
综上,a2﹣b2+2a=﹣1
【解析】(1)根据题意,分析可得A={﹣1,1},进而由韦达定理计算可得答案;(2)根据题意,分2种情况讨论:1°若1∈A,分析可得a+b=﹣1,进而可得a2﹣b2+2a=(a+b)(a﹣b)+2a=﹣(a﹣b)+2a=a+b,即可得答案;2°若﹣1∈A,分析可得a﹣b=﹣1,进而可得a2﹣b2+2a=(a+b)(a﹣b)+2a=﹣(a+b)+2a=a﹣b,代入数据即可得答案.
科目:高中数学 来源: 题型:
【题目】函数y=f(x)的图象如图所示.观察图象可知函数y=f(x)的定义域、值域分别是( )
A.[﹣5,0]∪[2,6),[0,5]
B.[﹣5,6),[0,+∞)
C.[﹣5,0]∪[2,6),[0,+∞)
D.[﹣5,+∞),[2,5]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=mx﹣1 , g(x)=﹣1+logmx(m>0,m≠1),有如下两个命题:
p:f(x)的定义域和g[f(x)]的值域相等.
q:g(x)的定义域和f[g(x)]的值域相等.
则( )
A.命题p,q都正确
B.命题p正确,命题q不正确
C.命题p,q都不正确
D.命题q不正确,命题p正确
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)=﹣x2+(3﹣2m)x+2+m(0<m≤1).
(1)若x∈[0,m],证明:f(x)≤ ;
(2)求|f(x)|在[﹣1,1]上的最大值g(m).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)设抛物线的顶点在坐标原点,焦点在轴正半轴上,过点的直线交抛物线于两点,线段的长是,的中点到轴的距离是.
(1)求抛物线的标准方程;
(2)在抛物线上是否存在不与原点重合的点,使得过点的直线交抛物线于另一点,满足,且直线与抛物线在点处的切线垂直?并请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】自驾游从地到地有甲乙两条线路,甲线路是,乙线是,其中段、段、段都是易堵车路段.假设这三条路段堵车与否相互独立.这三条路段的堵车概率及平均堵车时间如表1所示.经调查发现,堵车概率在上变化, 在上变化.在不堵车的情况下.走线路甲需汽油费500元,走线路乙需汽油费545元.而每堵车1小时,需多花汽油费20元.路政局为了估计段平均堵车时间,调查了100名走甲线路的司机,得到表2数据.
CD段 | EF段 | GH段 | |||
堵车概率 | |||||
平均堵车时间 (单位:小时) | 2 | 1 | |||
(表1) | |||||
堵车时间(单位:小时) | 频数 | ||||
8 | |||||
6 | |||||
38 | |||||
24 | |||||
24 | |||||
(表2) | |||||
(1)求段平均堵车时间的值.
(2)若只考虑所花汽油费期望值的大小,为了节约,求选择走甲线路的概率.
(3)在(2)的条件下,某4名司机中走甲线路的人数记为X,求X的数学期望。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数, ().
(Ⅰ)求函数的单调增区间;
(Ⅱ)当时,记,是否存在整数,使得关于的不等式有解?若存在,请求出的最小值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com