精英家教网 > 高中数学 > 题目详情

【题目】某城市随机抽取一个月(30天)的空气质量指数API监测数据,统计结果如下:

API

[0,50]

(50,100]

(100,150]

(150,200]

(200,250]

(250,300]

(300,350]

空气质量

轻微污染

轻度污染

中度污染

中度重污染

重度污染

天数

2

4

5

9

4

3

3

(Ⅰ)根据以上数据估计该城市这30天空气质量指数API的平均值;
(Ⅱ)若该城市某企业因空气污染每天造成的经济损失S(单位:元)与空气质量指数API(记为w)的关系式为:
S=
若在本月30天中随机抽取一天,试估计该天经济损失S大于200元且不超过600元的概率.

【答案】解:(Ⅰ)根据以上数据估计该城市这30天空气质量指数API的平均值为 [25×2+75×4+125×5+175×9+225×4+275×3+325×3]= ; (Ⅱ)由分段函数的表达式可知,若经济损失S大于200元且不超过600元,
则得200<4w﹣400≤600,即600<4w≤1000,
解得150<w≤250,此时对应的天数为9+4=13,
则对应的概率P=
【解析】(Ⅰ)根据平均数的计算公式即可估计该城市这30天空气质量指数API的平均值;(Ⅱ)根据分段函数的表达式,求出满足经济损失S大于200元且不超过600元对应的天数,根据古典概型的概率公式即可得到结论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】定义:分子为1且分母为正整数的分数称为单位分数.我们可以把1分拆为若干个不同的单位分数之和. 如:1= + + ,1= + + + ,1= + + + + ,…依此类推可得:1= + + + + + + + + + + + + ,其中m≤n,m,n∈N* . 设1≤x≤m,1≤y≤n,则 的最小值为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数y=f(x)是定义在R上的奇函数,且在区间(﹣∞,0]上是减函数,则不等式f(lnx)<﹣f(1)的解集为(
A.(e,+∞)
B.( ,+∞)
C.( ,e)
D.(0,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=Acos(ωx+φ)(其中A>0,ω>0,﹣ <φ< )的图象如图所示,为得到的g(x)=Acosωx的图象,可以将f(x)的图象(
A.向左平移
B.向左平移
C.向右平移
D.向右平移

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,给出的是计算 + + +…+ 的值的程序框图,其中判断框内可填入的是(
A.i≤2 021?
B.i≤2 019?
C.i≤2 017?
D.i≤2 015?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高一年级的A,B,C三个班共有学生120人,为调查他们的体育锻炼情况,用分层抽样的方法从这三个班中分别抽取4,5,6名学生进行调查. (Ⅰ)求A,B,C三个班各有学生多少人;
(Ⅱ)记从C班抽取学生的编号依次为C1 , C2 , C3 , C4 , C5 , C6 , 现从这6名学生中随机抽取2名做进一步的数据分析.
(i)列出所有可能抽取的结果;
(ii)设A为事件“编号为C1和C2的2名学生中恰有一人被抽到”,求事件A发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在Rt△ACB中,∠ACB=90°,BC=2AC,分别以A、B为圆心,AC的长为半径作扇形ACD和扇形BEF,D、E在AB上,F在BC上.在△ACB中任取一点,这一点恰好在图中阴影部分的概率是(
A.
B.1﹣
C.
D.1﹣

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了测量山顶M的海拔高度,飞机沿水平方向在A,B两点进行测量,A,B,M在同一个铅垂面内(如图).能够测量的数据有俯角、飞机的高度和A,B两点间的距离.请你设计一个方案,包括:
(1)指出需要测量的数据(用字母表示,并在图中标出);
(2)用文字和公式写出计算山顶M海拔高度的步骤.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知⊙M:(x+1)2+y2= 的圆心为M,⊙N:(x﹣1)2+y2= 的圆心为N,一动圆M内切,与圆N外切. (Ⅰ)求动圆圆心P的轨迹方程;
(Ⅱ)设A,B分别为曲线P与x轴的左右两个交点,过点(1,0)的直线l与曲线P交于C,D两点.若 =12,求直线l的方程.

查看答案和解析>>

同步练习册答案