ÒÑÖª£ºº¯ÊýÊýѧ¹«Ê½£¬ÊýÁÐ{an}¶Ôn¡Ý2£¬n¡ÊN×ÜÓÐÊýѧ¹«Ê½£»
£¨1£©Çó{an}µÄͨÏʽ£®
£¨2£©ÇóºÍ£ºSn=a1a2-a2a3+a3a4-a4a5+¡­+£¨-1£©n-1anan+1
£¨3£©ÈôÊýÁÐ{bn}Âú×㣺¢Ù{bn}ΪÊýѧ¹«Ê½µÄ×ÓÊýÁУ¨¼´{bn}ÖеÄÿһÏÊÇÊýѧ¹«Ê½µÄÏÇÒ°´ÔÚÊýѧ¹«Ê½ÖеÄ˳ÐòÅÅÁУ©¢Ú{bn}ΪÎÞÇîµÈ±ÈÊýÁУ¬ËüµÄ¸÷ÏîºÍΪÊýѧ¹«Ê½£®ÕâÑùµÄÊýÁÐÊÇ·ñ´æÔÚ£¿Èô´æÔÚ£¬Çó³öËùÓзûºÏÌõ¼þµÄÊýÁÐ{bn}£¬Ð´³öËüµÄͨÏʽ£¬²¢Ö¤Ã÷ÄãµÄ½áÂÛ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

½â£º£¨1£©ÓÉ£¬ÓÖ£¨2·Ö£©
ËùÒÔ£¬{an}ÊÇÒÔa1=1ΪÊ×ÏΪ¹«²îµÄµÈ²îÊýÁУ¬¼´£¨n¡ÊN*£©£¨4·Ö£©
£¨2£©µ±nΪżÊý£¬
ËùÒÔ £¨6·Ö£©
µ±nΪÆæÊý£¬Ôòn-1ΪżÊý£¬£¨8·Ö£©
×ÛÉÏ£º£¨10·Ö£©
£¨3£©É裬¹«±È£¬Ôò£¨k£¬p¡ÊN*£©¶ÔÈÎÒâµÄn¡ÊN*¾ù³ÉÁ¢£¬¹ÊmÊÇÕýÆæÊý£¬ÓÖS´æÔÚ£¬ËùÒÔm£¾1£¨12·Ö£©
µ±m=3ʱ£¬£¬´Ëʱ£¬£¬³ÉÁ¢ £¨13·Ö£©
µ±m=5ʱ£¬£¬´Ëʱ¹Ê²»³ÉÁ¢ £¨14·Ö£©
m=7ʱ£¬£¬´Ëʱ£¬£¬³ÉÁ¢ £¨15·Ö£©
µ±m¡Ý9ʱ£¬£¬ÓÉ£¬µÃ£¬É裬Ôò£¬ÓÖÒòΪk¡ÊN*£¬ËùÒÔk=1£¬2£¬´Ëʱb1=1»ò·Ö±ð´úÈ룬µÃµ½q£¼0²»ºÏÌâÒ⣨18·Ö£©
ÓÉ´Ë£¬Âú×ãÌõ¼þ£¨3£©µÄ{bn}Ö»ÓÐÁ½¸ö£¬¼´»ò£¨20·Ö£©
·ÖÎö£º£¨1£©Ö±½Ó¸ù¾ÝÒÑÖªÌõ¼þÕûÀíµÃµ½ÊýÁеĵÝÍƹØϵʽ£¬½ø¶øµÃµ½ÊýÁеĹæÂÉ£¬¼´¿ÉÇó³ö{an}µÄͨÏʽ£®
£¨2£©·ÖnΪżÊýºÍnΪÆæÊý·Ö±ðÇóºÍ£¬×îºóÔٺϲ¢¼´¿ÉµÃµ½½áÂÛ£»
£¨3£©ÏÈÉ裬¹«±È£¬µÃµ½£¨k£¬p¡ÊN*£©¶ÔÈÎÒâµÄn¡ÊN*¾ù³ÉÁ¢£¬¹ÊmÊÇÕýÆæÊý£¬ÓÖS´æÔÚ£¬ËùÒÔm£¾1£»ÔÙ¶ÔmµÄÈ¡Öµ½øÐÐÌÖÂÛ£¬¼´¿ÉµÃµ½ËùÓзûºÏÌõ¼þµÄÊýÁÐ{bn}£¬Ð´³öËüµÄͨÏʽ£®
µãÆÀ£º±¾ÌâÊǶÔÊýÁÐ֪ʶµÄ×ۺϿ¼²é£®ÆäÖÐÉæ¼°µ½ÊýÁеĵÝÍÆʽ£¬ÒÔ¼°ÊýÁеÄÇóºÍ£¬ÊôÓÚ×ÛºÏÐÔÌâÄ¿£¬¿¼²é¼ÆËãÄÜÁ¦ÒÔ¼°·ÖÎöÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

10¡¢ÒÑÖªÆ溯Êýf£¨x£©µÄ¶¨ÒåÓòΪR£¬ÇÒÊÇÒÔ2ΪÖÜÆÚµÄÖÜÆÚº¯Êý£¬ÊýÁÐ{an}ÊÇÊ×ÏîΪ1£¬¹«²îΪ1µÄµÈ²îÊýÁУ¬Ôòf£¨a1£©+f£¨a2£©+¡­+f£¨a10£©µÄֵΪ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÃݺ¯Êýy=xm2-2m-3(m¡ÊN+)µÄͼÏóÓëxÖᣬyÖáÎÞ½»µãÇÒ¹ØÓÚÔ­µã¶Ô³Æ£¬ÓÖÓк¯Êýf£¨x£©=x2-alnx+m-2ÔÚ£¨1£¬2]ÉÏÊÇÔöº¯Êý£¬g£¨x£©=x-a
x
ÔÚ£¨0£¬1£©ÉÏΪ¼õº¯Êý£®
¢ÙÇóaµÄÖµ£»
¢ÚÈô
1
p(x)
=2f¡ä(x)-2x+
5
x
+1
£¬ÊýÁÐ{an}Âú×ãa1=1£¬an+1=p£¨an£©£¬£¨n¡ÊN+£©£¬ÊýÁÐ{bn}£¬Âú×ãbn=
1
2
anan+13n
£¬sn=b1+b2+b3+¡­+bn£¬ÇóÊýÁÐ{an}µÄͨÏʽanºÍsn£®
¢ÛÉèh(x)=f¡ä(x)-g(x)-2
x
+
3
x
£¬ÊԱȽÏ[h£¨x£©]n+2Óëh£¨xn£©+2nµÄ´óС£¨n¡ÊN+£©£¬²¢ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•ÁÉÄþһģ£©ÒÑÖªÃݺ¯Êýy=f£¨x£©¹ýµã£¨4£¬2£©£¬Áîan=f£¨n+1£©+f£¨n£©£¬n¡ÊN+£¬¼ÇÊýÁÐ{
1
an
}
µÄÇ°nÏîºÍΪSn£¬ÔòSn=10ʱ£¬nµÄÖµÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Éè¶þ´Îº¯Êýf(x)=(k-4)x2+kx
 &(k¡ÊR)
£¬¶ÔÈÎÒâʵÊýx£¬f£¨x£©¡Ü6x+2ºã³ÉÁ¢£»ÕýÊýÊýÁÐ{an}Âú×ãan+1=f£¨an£©£®
£¨1£©Çóº¯Êýf£¨x£©µÄ½âÎöʽºÍÖµÓò£»
£¨2£©ÊÔд³öÒ»¸öÇø¼ä£¨a£¬b£©£¬Ê¹µÃµ±an¡Ê£¨a£¬b£©Ê±£¬ÊýÁÐ{an}ÔÚÕâ¸öÇø¼äÉÏÊǵÝÔöÊýÁУ¬²¢ËµÃ÷ÀíÓÉ£»
£¨3£©ÈôÒÑÖª£¬ÇóÖ¤£ºÊýÁÐ{lg(
1
2
-an)+lg2}
ÊǵȱÈÊýÁУ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª¹ýº¯Êýf£¨x£©=x2+bxͼÏóÉϵãA£¨1£¬f£¨1£©£©µÄÖ±ÏßlÓëÖ±Ïß3x-y+2=0ƽÐУ¬ÇÒÖ±ÏßlÓ뺯ÊýͼÏóÖ»ÓÐÒ»¸ö½»µã£®ÓÖÊýÁÐ
1f(n)
£¨n¡ÊN*£©µÄÇ°nÏîºÍΪSn£¬ÔòS2012µÄֵΪ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸