精英家教网 > 高中数学 > 题目详情

(本题满分14分) 本题共有2个小题,第1小题满分6分,第2小题满分8分.
已知数列满足
(1)设,证明:数列为等差数列,并求数列的通项公式;
(2)求数列的前项和

(1), 
为等差数列.又
(2)

解析试题分析:(1),……2分  
为等差数列.又
(2)设,则
3



考点:本题考查了等差数列的通项及数列的前N项和
点评:高考关于数列方面的命题主要有以下三个方面:(1)数列本身的有关知识,其中有等差数列、等比数列的概念、性质、通项公式及求和公式;(2)数列与其他知识结合,其中有数列与函数、方程、不等式、三角、几何的结合以及探索性问题;(3)数列的应用问题,其中主要是以增长率为主.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设数列的前项和为,若对于任意的正整数都有
(1)设,求证:数列是等比数列,并求出的通项公式;
(2)求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的前项和,数列满足
(1)求数列的通项公式;(2)求数列的前项和;
(3)求证:不论取何正整数,不等式恒成立

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的前n项和(n为正整数)。
(Ⅰ)令,求证数列是等差数列,并求数列的通项公式;
(Ⅱ)令试比较的大小,并予以证明。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)
在数列{an}中,a1=1,an=n2[1+++…+] (n≥2,n∈N)
(1)当n≥2时,求证:=
(2)求证:(1+)(1+)…(1+)<4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分16分)
已知有穷数列共有项(整数),首项,设该数列的前项和为,且其中常数⑴求的通项公式;⑵若,数列满足
求证:
⑶若⑵中数列满足不等式:,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题12分)已知数列是各项均不为的等差数列,公差为为其前项和,且满足.数列满足为数列的前n项和.
(Ⅰ)求数列的通项公式和数列的前n项和
(Ⅱ)若对任意的,不等式恒成立,求实数的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分13分)设数列为单调递增的等差数列依次成等比数列.
(Ⅰ)求数列的通项公式
(Ⅱ)若求数列的前项和
(Ⅲ)若,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列满足,试证明:
(1)当时,有
(2).

查看答案和解析>>

同步练习册答案