精英家教网 > 高中数学 > 题目详情
4.梯子AB靠在墙上,梯子的底端A到墙根O的距离为2m,梯子的顶端B到地面的距离为7m,现将梯子的底端A向外移动到A′,使梯子的底端A′到墙根O的距离等于3m,同时梯子的顶端B下降B′,那么BB′(  )
A.等于1mB.大于1mC.小于1mD.不能确定

分析 根据梯子在移动前后长度不变,两次运用勾股定理解决问题.

解答 解:根据几何关系可知,∠AOB为直角,且AB=A'B',
由于OA=2,OB=7,所以AB=$\sqrt{53}$,
当OA'=3时,A'B'=AB=$\sqrt{53}$,
根据勾股定理,解得OB'=$\sqrt{44}$=2$\sqrt{11}$≈6.633,
所以,BB'≈0.366,
也就是梯子的顶端B只下降了0.366m,
故选:C.

点评 本题主要考查了运用勾股定理解三角形,在运动的过程中抓住不变量是关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知双曲线C1的-个焦点是F(4,0),一条渐近线方程是$\sqrt{15}$x-y=0,抛物线C2;y2=2px(p>0)的准线恰好经过双曲线C1的左顶点.
(1)求双曲线C1和抛物线C2的标准方程;
(2)经过双曲线C1焦点F的直线1与抛物线C2交于A、B两点,若O是坐标原点.求证:0A⊥0B.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.抛物线y2=2px(p>0)上一点M到焦点F的距离|MF|=2p,求点M的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数y=sin(x-$\frac{π}{3}$),则其单调增区间为$[-\frac{π}{6}+2kπ,\frac{5π}{6}+2kπ]$,k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知平面上的两个向量$\overrightarrow{a}$=(2cosα,2sinα),$\overrightarrow{b}$=(2cosβ,2sinβ)(0<β<α<π).
(1)若$\overrightarrow{a}$•$\overrightarrow{b}$=$\frac{12}{5}$且cosβ=$\frac{4}{5}$,求sinα的值;
(2)判定向量$\overrightarrow{a}$+$\overrightarrow{b}$与向量$\overrightarrow{a}$-$\overrightarrow{b}$是否互相垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,△ABC是等边三角形,BM=CN,∠1=60°,∠DMN=2∠N,求证:∠N=30°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=$\sqrt{3}$sin2x+2cos2x+m在区间[0,$\frac{π}{2}$]上的最大值为3,则m=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=(sinx+cosx)2+2cos2x-2.
(1)求函数f(x)的最小正周期和单调增区间;
(2)当x∈[$\frac{π}{4}$,$\frac{3π}{4}$]时,求函数f(x)的最大值,最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设P(x,y)是曲线C:(x+2)2+y2=1上任意一点,则$\frac{y}{x}$的取值范围是(  )
A.[-$\sqrt{3}$,$\sqrt{3}$]B.(-∞,-$\sqrt{3}$)∪($\sqrt{3}$,+∞)C.[-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$]D.(-∞,-$\frac{\sqrt{3}}{3}$)∪($\frac{\sqrt{3}}{3}$,+∞)

查看答案和解析>>

同步练习册答案