精英家教网 > 高中数学 > 题目详情
如图所示,已知平行六面体ABCD-A1B1C1D1 的底面ABCD 是菱形,且∠C1CB= ∠C1CD= ∠BCD=60 °.     求证:CC1 ⊥BD.
证明:设则|a|=|b|.
=b-a,
(b-a)·c=b·c-a·c=|b||c|cos60°-|a||c|cos60°=0,

即C1C⊥BD.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图所示,已知直平行六面体ABCD-A1B1C1D1的底面边长均为2a,侧棱长为a,∠ABC=60°,E、F分别是A1B、A1C的中点.
(1)求证:EF∥平面BB1CC1
(2)求二面角A1-BC-A的大小.

查看答案和解析>>

科目:高中数学 来源:高考零距离 二轮冲刺优化讲练 数学 题型:044

如图所示,已知平行六面体AC1的底面ABCD为菱形,且∠C1CB=∠C1CD=∠BCD.

(1)

求证:C1C⊥BD

(2)

的值为多少时,能使A1C⊥平面C1BD?请给出证明

查看答案和解析>>

科目:高中数学 来源:单元双测 同步达标活页试卷 高二数学(下A) 人教版 题型:047

如图所示,已知平行六面体ABCD-A1B1C1D1的底面ABCD是菱形,且∠C1CB=∠C1CD=∠BCD=

(1)

求证:C1C⊥BD

(2)

假定CD=2,CC1,求二面角C1-BD-C的大小的大小

(3)

的值为多少时,能使A1C⊥平面C1BD?请给出证明

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,已知平行六面体ABCDA1B1C1D1的底面是菱形,且∠C1CB=∠C1CD=∠BCD=60°.

(1)求证:CC1BD;

(2)当的值为多少时,能使A1C⊥平面C1BD?并加以证明.

查看答案和解析>>

同步练习册答案