【题目】已知定点,,动点P为平面上一个动点,且直线SP,TP的斜率之积为.
(1)求动点P的轨迹E的方程;
(2)设点B为轨迹E与y轴正半轴的交点,是否存在斜率为直线l,使得l交轨迹E于M,N两点,且恰是的重心?若存在,求l的方程;若不存在,说明理由.
科目:高中数学 来源: 题型:
【题目】某品牌布娃娃做促销活动:已知有50个布娃娃,其中一些布娃娃里面有奖品,参与者可以先在50个布娃娃中购买5个,看完5个布娃娃里面的结果再决定是否将剩下的布娃娃全部购买,设每个布娃娃有奖品的概率为,且各个布娃娃是否有奖品相互独立.
(1)记5个布娃娃中有1个有奖品的概率为,当时,的最大值,求;
(2)假如这5个布娃娃中恰有1个有奖品,以上问中的作为p的值.已知每次购买布娃娃需要2元,若有中奖,则中奖者每次可得奖金15元.以最终奖金的期望作为决策依据,是否该买下剩下所有的45个布娃娃;
(3)若已知50件布娃娃中有10个布娃娃有奖品,从这堆布娃娃中任意购买5个,若抽到k个有奖品可能性最大,求k的值.(k为正整数)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现有6名选手参加才艺比赛,其中男、女选手各3名,且3名男选手分别表演歌唱、舞蹈和魔术,3名女选手分别表演歌唱、舞蹈和魔术,若要求相邻出场的选手性别不同且表演的节目不同,则不同的出场方式的种数为( )
A.6B.12C.18D.24
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)在定义域(0,+∞)上是单调函数,且x∈(0,+∞),f(f(x)﹣ex+x)=e.若不等式2f(x)﹣f′(x)﹣3≥ax对x∈(0,+∞)恒成立,则a的取值范围是( )
A.(﹣∞,e﹣2]B.(﹣∞,e﹣1]C.(﹣∞,2e﹣3]D.(﹣∞,2e﹣1]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,四边形是等腰梯形,,,,三角形是等边三角形,平面平面,E,F分别为,的中点.
(1)求证:平面平面;
(2)若,求直线与平面所成角的正弦值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数在处取得极大值或极小值,则称为函数的极值点.设函数.
(1)若函数在上无极值点,求的取值范围;
(2)求证:对任意实数,在函数的图象上总存在两条切线相互平行;
(3)当时,若函数的图象上存在的两条平行切线之间的距离为4,问;这样的平行切线共有几组?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】平面直角坐标系xOy中,抛物线E顶点在坐标原点,焦点为.以坐标原点为极点,x轴非负半轴为极轴建立极坐标系.
(Ⅰ)求抛物线E的极坐标方程;
(Ⅱ)过点倾斜角为的直线l交E于M,N两点,若,求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校名学生参加军事冬令营活动,活动期间各自扮演一名角色进行分组游戏,角色按级别从小到大共种,分别为士兵、排长、连长、营长、团长、旅长、师长、军长和司令.游戏分组有两种方式,可以人一组或者人一组.如果人一组,则必须角色相同;如果人一组,则人角色相同或者人为级别连续的个不同角色.已知这名学生扮演的角色有名士兵和名司令,其余角色各人,现在新加入名学生,将这名学生分成组进行游戏,则新加入的学生可以扮演的角色的种数为________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com