精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆 过点且离心率.

1)求椭圆的方程;

(2)若直线与椭圆交于不同的两点且线段的垂直平分线过定点的取值范围.

【答案】(1)2.

【解析】试题分析:(1)由离心率得到a,c,b的关系,进一步把椭圆方程用含有c的代数式表示,再结合点在椭圆上求得c,则椭圆方程可求;(2)设出M,N的坐标,联立直线方程和椭圆方程,由判别式大于0得到,再结合根与系数关系得到MN中点P的坐标为.求出MN的垂直平分线l'方程,由P在l'上,得到,再结合求得k的取值范围.

试题解析:(1)离心率1

又椭圆过点,(1式代入上式,解得: 椭圆方程为

2)设的中点

得:

直线与椭圆交于不同的两点,

,(1

由韦达定理得:

直线的斜率为:

由直线和直线垂直可得: 代入(1)式,

可得: .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)的定义域为R,若存在常数T≠0,使得f(x)=Tf(x+T)对任意的x∈R成立,则称函数f(x)是Ω函数. (Ⅰ)判断函数f(x)=x,g(x)=sinπx是否是Ω函数;(只需写出结论)
(Ⅱ)说明:请在(i)、(ii)问中选择一问解答即可,两问都作答的按选择(i)计分
(i)求证:若函数f(x)是Ω函数,且f(x)是偶函数,则f(x)是周期函数;
(ii)求证:若函数f(x)是Ω函数,且f(x)是奇函数,则f(x)是周期函数;
(Ⅲ)求证:当a>1时,函数f(x)=ax一定是Ω函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】证明与分析
(1)已知a,b为正实数.求证: + ≥a+b;
(2)某题字迹有污损,内容是“已知|x|≤1, ,用分析法证明|x+y|≤|1+xy|”.试分析污损部分的文字内容是什么?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)、g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(﹣3)=0,则不等式f(x)g(x)<0的解集是( )
A.(﹣3,0)∪(3,+∞)
B.(﹣3,0)∪(0,3)
C.(﹣∞,﹣3)∪(3,+∞)
D.(﹣∞,﹣3)∪(0,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一点在直线上从时刻t=0(s)开始以速度v(t)=t2﹣4t+3(m/s)运动,求:
(1)在t=4s时的位置;
(2)在t=4s的运动路程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数y=sin2x的图象向左平移 个单位长度,所得函数是(
A.奇函数
B.偶函数
C.既是奇函数又是偶函数
D.既不是奇函数也不是偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某次水下科研考察活动中,需要潜水员潜入水深为60米的水底进行作业,根据以往经验,潜水员下潜的平均速度为(米/单位时间),每单位时间的用氧量为(升),在水底作业10个单位时间,每单位时间用氧量为0.9(升),返回水面的平均速度为(米/单位时间),每单位时间用氧量为1.5(升),记该潜水员在此次考察活动中的总用氧量为(升).

(1)求关于的函数关系式;

(2)若 ,求当下潜速度取什么值时,总用氧量最少.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱锥中, 是边长为的等边三角形, 分别是的中点.

(1)求证: 平面

(2)求证: 平面

(3)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形中, 分别在上, ,现将四边形沿折起,使.

(1)若,在折叠后的线段上是否存在一点,使得平面?若存在,求出的值;若不存在,说明理由;

(2)求三棱锥的体积的最大值,并求出此时点到平面的距离.

查看答案和解析>>

同步练习册答案