【题目】已知函数(其中为常数且)在处取得极值.
(1)当时,求的极大值点和极小值点;
(2)若在上的最大值为1,求的值.
【答案】(Ⅰ)单调递增区间为,;单调递减区间为; (Ⅱ)或.
【解析】
试题分析:(1)通过求解函数的导数,结合函数的极值点,求出,然后通过函数的单调性求解极值点即可;(2)令,求出,,然后讨论当时,得出的单调区间,求出的最大值,求出;再讨论时,当,及时,分别得出的单调区间,求出的最大值,即可求出的值.
试题解析:(1)∵
∴.
∵函数在处取得极值,
∴
∴当时,,则
、随的变化情况如下表:
1 | |||||
+ | 0 | - | 0 | + | |
极大值 | 极小值 |
∴的单调递增区间为和,单调递减区间为
∴的极大值点为,的极小值点为1.
(2)∵
令得,,
∵在处取得极值
∴
(ⅰ)当时,在上单调递增,在上单调递减,
∴在区间上的最大值为,则,即
∴
(ⅱ)当时,
①当时,在上单调递增,上单调递减,上单调递增,
∴的最大值1可能在或处取得,
而
∴
∴
②当时,在区间上单调递增,上单调递减,上单调递增
∴的最大值1可能在或处取得,而
∴,即,与
③当时,在区间上单调递增,在上单调递减,
∴的最大值1可能在处取得,而,矛盾.
综上所述,或.
科目:高中数学 来源: 题型:
【题目】为了引导居民合理用水,某市决定全面实施阶梯水价.阶梯水价原则上以住宅(一套住宅为一户)的月用水量为基准定价,具体划分标准如表:
阶梯级别 | 第一阶梯水量 | 第二阶梯水量 | 第三阶梯水量 |
月用水量范围(单位:立方米) |
从本市随机抽取了10户家庭,统计了同一月份的月用水量,得到如图茎叶图:
(Ⅰ)现要在这10户家庭中任意选取3户,求取到第二阶梯水量的户数X的分布列与数学期望;
(Ⅱ)用抽到的10户家庭作为样本估计全市的居民用水情况,从全市依次随机抽取10户,若抽到户月用水量为一阶的可能性最大,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知复平面内平行四边形ABCD(A,B,C,D按逆时针排列),A点对应的复数为2+i,向量对应的复数为1+2i,向量对应的复数为3-i.
(1)求点C,D对应的复数.
(2)求平行四边形ABCD的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业加工生产一批珠宝,要求每件珠宝都按统一规格加工,每件珠宝的原材料成本为3.5万元,每件珠宝售价(万元)与加工时间(单位:天)之间的关系满足图1,珠宝的预计销量(件)与加工时间(天)之间的关系满足图2.原则上,单件珠宝的加工时间不能超过55天,企业支付的工人报酬为这批珠宝销售毛利润的三分之一,其他成本忽略不计算.
(1)如果每件珠宝加工天数分别为6,12,预计销量分别会有多少件?
(2)设工厂生产这批珠宝产生的纯利润为(万元),请写出纯利润(万元)关于加工时间(天)之间的函数关系式,并求纯利润(万元)最大时的预计销量.
注:毛利润=总销售额-原材料成本,纯利润=毛利润-工人报酬
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4—4:坐标系与参数方程]
在直角坐标系中,已知曲线的参数方程为 为参数以原点为极点x轴正半轴为极轴建立极坐标系,直线的极坐标方程为:,直线的极坐标方程为.
(Ⅰ)写出曲线的极坐标方程,并指出它是何种曲线;
(Ⅱ)设与曲线交于两点,与曲线交于两点,求四边形面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】己知函数,.
(1)画出的大致图象,并根据图象写出函数的单调区间;
(2)当且时,求的取值范围;
(3)是否存在实数a,b, 使得函数在上的值域也是?若存在,求出a,b的值,若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com