精英家教网 > 高中数学 > 题目详情
14.“tana=2”是“tan2a=-$\frac{4}{3}$”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

分析 根据二倍角公式,求出tana的值,结合充分必要条件判断即可.

解答 解:∵tan2a=$\frac{2tana}{1{-tan}^{2}a}$=-$\frac{4}{3}$,
∴-$\frac{2}{3}$(1-tan2a)=tana,
令tana=t,
∴2t2-3t-2=0,
∴t=2或t=-$\frac{1}{2}$,
∴“tana=2”是“tan2a=-$\frac{4}{3}$”的充分不必要条件,
故选:A.

点评 本题考查了充分必要条件,考查三角恒等变换问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.设Sn为数列{an}的前n项和,且a3-a1=3,$\frac{{S}_{n+1}-1}{{S}_{n}}$=$\frac{{a}_{2}}{{a}_{1}}$=p(p>0,n∈N*
(1)求数列{an}的通项公式;
(2)求数列{an+(-1)nlog2an}的前2n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.要得到函数y=3sin(2x+$\frac{π}{3}$)的图象,只需要将函数y=3cos2x的图象(  )
A.向右平行移动$\frac{π}{12}$个单位B.向左平行移动$\frac{π}{12}$个单位
C.向右平行移动$\frac{π}{6}$个单位D.向左平行移动$\frac{π}{6}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知f(x)=x3+3ax2+bx+a2(a>1)在x=-1时有极值0.
(1)求常数a,b的值; 
(2)求f(x)的单调区间.  
(3)求f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若非空集合M是集合N的真子集,则“a∈M或a∈N”是“a∈M∩N”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.即不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数$f(x)=\left\{{\begin{array}{l}{{3^x},x>0}\\{x+5,x≤0}\end{array}}\right.$,则f(f(-3))=(  )
A.$\frac{1}{27}$B.2C.-27D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.心理学家分析发现视觉和空间想象力与性别有关,某数学兴趣小组为了验证这个结论,按分层抽样的方法从数学兴趣小组中抽取59名同学(男30女20),给这些同学每人一道几何题和一道代数题,让每名同学自由选择一道题解答,则选题情况如表所示.
几何题代数题总计
男同学22830
女同学81220
总计302050
(1)能否根据此判断有97.5%的把握认为视觉和空间想象力与性别有关?
(2)现从选择做几何题的8名女同学(包括甲、乙)中任意抽取2名,对这2名女同学的答题情况进行研究,记甲、乙2名女同学被抽到的人数为X,求X的分布列及数学期望E(X).
P(K2≥k00.100.050.0100.005
k02.7063.8416.6357.879
(参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知向量$\overrightarrow a$=(1,-1),则下列向量中与$\overrightarrow a$的夹角最小的是(  )
A.(1,0)B.(-1,1)C.(0,1)D.(-1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.i是虚数单位,则$\frac{i}{i(1+i)}$的模为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\sqrt{2}$D.2

查看答案和解析>>

同步练习册答案