A. | B. | C. | D. |
分析 $g(x)={log_a}{(\frac{1}{a})^x}={log_a}{a^{-x}}=-x$,$F(x)=\frac{f(x)}{g(x)}=-\frac{cosx}{x}$,定义域为{x|x≠0},$F(-x)=-\frac{cos(-x)}{-x}=\frac{cosx}{x}=-F(x)$,故函数为奇函数,图象关于原点对称.
解答 解:$g(x)={log_a}{(\frac{1}{a})^x}={log_a}{a^{-x}}=-x$$F(x)=\frac{f(x)}{g(x)}=-\frac{cosx}{x}$,
定义域为{x|x≠0},排除C,D,
$F(-x)=-\frac{cos(-x)}{-x}=\frac{cosx}{x}=-F(x)$,故为奇函数,图象关于原点对称,
故选:A.
点评 对数式的运算,函数的定义域,奇偶性和函数的图象.
科目:高中数学 来源: 题型:选择题
A. | (x-2)2+(y+1)2=2 | B. | (x+2)2+(y-1)2=2 | C. | (x-1)2+(y-2)2=2 | D. | (x-2)2+(y-1)2=2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $f({{2^{\frac{1}{x}}}})>f({{{({\frac{1}{8}})}^2}})>f({{{log}_2}({\frac{1}{8}})})$ | B. | $f({{{({\frac{1}{8}})}^2}})>f({{2^{\frac{1}{x}}}})>f({{{log}_2}({\frac{1}{8}})})$ | ||
C. | $f({{2^{\frac{1}{x}}}})>f({{{log}_2}({\frac{1}{8}})})>f({{{({\frac{1}{8}})}^2}})$ | D. | $f({{{({\frac{1}{8}})}^2}})>f({{{log}_2}({\frac{1}{8}})})>f({{2^{\frac{1}{x}}}})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com