(本小题满分13分)
设函数的导函数为,且。
(Ⅰ)求函数的图象在x=0处的切线方程;
(Ⅱ)求函数的极值。
(Ⅰ)(Ⅱ)当x=-3时,有极大值27;当x=1时,有极小值-5
【解析】
试题分析:(Ⅰ)因为, 1分
所以由,得a=3, 3分
则。
所以, 4分
所以函数的图象在x=0处的切线方程为。 6分
(Ⅱ)令,得x=-3或x=1。 7分
当x变化时,与的变化情况如下表:
x |
(-∞,-3) |
-3 |
(-3,1) |
1 |
(1,+∞) |
+ |
0 |
- |
0 |
+ |
|
↗ |
27 |
↘ |
-5 |
↗ |
11分
即函数在(-∞,-3)上单调递增,在(-3,1)上单调递减,在(1,+∞)上单调递增。
所以当x=-3时,有极大值27;当x=1时,有极小值-5。 13分
考点:导数的几何意义及用导数求函数极值
点评:函数在某点处的导数等于该点处的切线斜率,求函数极值先要通过导数求的极值点及单调区间,从而确定是极大值还是极小值
科目:高中数学 来源:2015届江西省高一第二次月考数学试卷(解析版) 题型:解答题
(本小题满分13分)已知函数.
(1)求函数的最小正周期和最大值;
(2)在给出的直角坐标系中,画出函数在区间上的图象.
(3)设0<x<,且方程有两个不同的实数根,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年福建省高三年级八月份月考试卷理科数学 题型:解答题
(本小题满分13分)已知定义域为的函数是奇函数.
(1)求的值;(2)判断函数的单调性;
(3)若对任意的,不等式恒成立,求k的取值范围.
查看答案和解析>>
科目:高中数学 来源:河南省09-10学年高二下学期期末数学试题(理科) 题型:解答题
(本小题满分13分)如图,正三棱柱的所有棱长都为2,为的中点。
(Ⅰ)求证:∥平面;
(Ⅱ)求异面直线与所成的角。www.7caiedu.cn
[来源:KS5
U.COM
查看答案和解析>>
科目:高中数学 来源:2010-2011学年福建省高三5月月考调理科数学 题型:解答题
(本小题满分13分)
已知为锐角,且,函数,数列{}的首项.
(1) 求函数的表达式;
(2)在中,若A=2,,BC=2,求的面积
(3) 求数列的前项和
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com