精英家教网 > 高中数学 > 题目详情
8.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率为$\frac{1}{2}$,过右焦点且垂直于x轴的直线被椭圆所截得的弦长为3.
(1)求椭圆C的方程;
(2)A,B两点分别为椭圆C的左右顶点,P为椭圆上异于A,B的一点,记直线PA,PB的斜率分别为kPA,kPB,求kPA•kPB的值.

分析 (1)由椭圆的离心率公式及通径公式,联立即可求得a和b的值,求得椭圆方程;
(2)根据直线的斜率公式,由y2=3(1-$\frac{{x}^{2}}{4}$),代入即可求得kPA•kPB的值.

解答 解:(1)由椭圆离心率e=$\frac{c}{a}$=$\sqrt{1-\frac{{b}^{2}}{{a}^{2}}}$=$\frac{1}{2}$,则a2=2b2
过右焦点且垂直于x轴的直线被椭圆所截得的弦长为3,$\frac{2{b}^{2}}{a}$=3,
解得:a2=4,b2=$\sqrt{3}$,
∴椭圆C的方程$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$;
(2)由(1)有A,B两点坐标为A(-2,0),B(2,0),
设P坐标为(x,y),则直线PA,PB斜率分别为kPA=$\frac{y}{x+2}$,kPA=$\frac{y}{x-2}$,
∴kPA•kPB=$\frac{{y}^{2}}{{x}^{2}-4}$,
又因为点P在椭圆C上,则y2=3(1-$\frac{{x}^{2}}{4}$),
∴kPA•kPB=$\frac{{y}^{2}}{{x}^{2}-4}$=$\frac{\frac{3(4-{x}^{2})}{4}}{{x}^{2}-4}$=-$\frac{3}{4}$,

点评 本题考查椭圆的标准方程及简单几何性质,考查直线的斜率公式,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.在△ABC中,角A,B,C的对边分别为a,b,c,已知$a{cos^2}\frac{B}{2}+b{cos^2}\frac{A}{2}=\frac{3}{2}c,a=2b$.
(1)证明:△ABC为钝角三角形;
(2)若△ABC的面积为$3\sqrt{15}$,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.“?p是真”是“p∨q为假”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.各项均不为0的数列{an}满足$\frac{{{a_{n+1}}({{a_n}+{a_{n+2}}})}}{2}={a_{n+2}}{a_n}$,且a2=2a6=$\frac{1}{5}$,则数列$\left\{{\frac{1}{a_n}}\right\}$的前10项和为$\frac{375}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知向量$\overrightarrow{m}$=(sinA,sinB),$\overrightarrow{n}$=(cosB,cosA),$\overrightarrow{m}$•$\overrightarrow{n}$=sin2C,且A、B、C分别为△ABC的三边a、b、c所对的角.
(1)求角C的大小;
(2)若2sinC=sinA+sinB,且$\overrightarrow{CA}$•($\overrightarrow{AB}$-$\overrightarrow{AC}$)=18,求c边的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.(1)若a是从0,1,2,3四个数中任取的一个数,b是从0,1,2三个数中任取的一个数,求a≥b的概率;
(2)甲、乙两人约定在6时到7时之间在某处会面,并约定先到者应等候另一人一刻种,过时即可离去.求两人能会面的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知双曲线C1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)与双曲线C2:$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{16}$=1有相同的渐近线,且C1的右焦点为F($\sqrt{5}$,0),则双曲线C1的方程为${x^2}-\frac{y^2}{4}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.两条平行直线线3x+4y-9=0和6x+8y+2=0的距离是(  )
A.$\frac{8}{5}$B.2C.$\frac{11}{5}$D.$\frac{7}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设等差数列 {an} 的前 n 项和为 Sn,已知 ${({a}_{7}-1)}^{3}+2017({a}_{7}-1)=1$,${({a}_{2011}-1)}^{3}+2017({a}_{2011}-1)=-1$,则下列结论正确的是(  )
A.S2017=2017,a2011<a7B.S2017=2017,a2017>a7
C.S2012=-2017,a2017<a7D.S2017=-2017,a2017>a7

查看答案和解析>>

同步练习册答案