精英家教网 > 高中数学 > 题目详情

【题目】下列函数中,既是奇函数,又在区间上递增的是(

A.B.

C.D.

【答案】C

【解析】

分析各选项中函数的奇偶性和这些函数在区间上的单调性,从而可得出正确选项.

对于A选项,设,定义域为,关于原点对称,,该函数为偶函数,且当时,,该函数在区间上为增函数;

对于B选项,函数的定义域为,不关于原点对称,该函数为非奇非偶函数,且该函数在区间上为增函数;

对于C选项,设,定义域为,关于原点对称,且,该函数为奇函数,

由于函数在区间上为增函数,函数在区间上为减函数,

所以,函数在区间上为增函数;

对于D选项,设,定义域为,关于原点对称,且,该函数为奇函数,

由双勾函数的单调性可知,函数在区间上为减函数,在区间上为增函数,则该函数在区间上不单调.

故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若关于的不等式上恒成立,求的取值范围;

(Ⅱ)设函数,在(Ⅰ)的条件下,试判断上是否存在极值.若存在,判断极值的正负;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】华东师大二附中乐东黄流中学位于我国南海边,有一片美丽的沙滩和一弯天然的海滨浴场.如图,海岸线MAN(海岸线MAN上方是大海),现用长为BC的栏网围成一个三角形学生游泳场所,其中.

1)若,求三角形游泳场所面积最大值;

2)若BC=600,由于学生人数的增加需要扩大游泳场所面积,现在折线MBCN上方选点D,现用长为BDDC的栏围成一个四边形游泳场所DBAC,使,求四边形游泳场所DBAC的最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设F1、F2分别为椭圆C:=1(a>b>0)的左、右焦点,点A为椭圆C的左顶点,点B为椭圆C的上顶点,且|AB|=,△BF1F2为直角三角形.

(1)求椭圆C的方程;

(2)设直线y=kx+2与椭圆交于P、Q两点,且OP⊥OQ,求实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为配合“2019双十二促销活动,某公司的四个商品派送点如图环形分布,并且公司给四个派送点准备某种商品各50.根据平台数据中心统计发现,需要将发送给四个派送点的商品数调整为40455461,但调整只能在相邻派送点进行,每次调动可以调整1件商品.为完成调整,则(

A.最少需要16次调动,有2种可行方案

B.最少需要15次调动,有1种可行方案

C.最少需要16次调动,有1种可行方案

D.最少需要15次调动,有2种可行方案

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,平面的中点为.

(Ⅰ)求证:

(Ⅱ)求二面角的余弦值;

(Ⅲ)在棱上是否存在点,使得平面?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市对城市路网进行改造,拟在原有a个标段(注:一个标段是指一定长度的机动车道)的基础上,新建x个标段和n个道路交叉口,其中nx满足nax+5.已知新建一个标段的造价为m万元,新建一个道路交叉口的造价是新建一个标段的造价的k

(1)写出新建道路交叉口的总造价y(万元)x的函数关系式;

(2)P是新建标段的总造价与新建道路交叉口的总造价之比.若新建的标段数是原有标段数的20%,且k≥3.问:P能否大于,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解贵州省某州2020届高三理科生的化学成绩的情况,该州教育局组织高三理科生进行了摸底考试,现从参加考试的学生中随机抽取了100名理科生,,将他们的化学成绩(满分为100分)分为6组,得到如图所示的频率分布直方图.

1)求a的值;

2)记A表示事件“从参加考试的所有理科生中随机抽取一名学生,该学生的化学成绩不低于70分”,试估计事件A发生的概率;

3)在抽取的100名理科生中,采用分层抽样的方法从成绩在内的学生中抽取10名,再从这10名学生中随机抽取4名,记这4名理科生成绩在内的人数为X,求X的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数,若存在正常数,使得对任意的,都有成立,我们称函数同比不减函数

1)求证:对任意正常数都不是同比不减函数

2)若函数同比不减函数,求的取值范围;

3)是否存在正常数,使得函数同比不减函数,若存在,求的取值范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案