精英家教网 > 高中数学 > 题目详情
4.过⊙O外一点P作⊙O的两条割线PAB,PMN,其中PMN过圆心O,过P作再作⊙O的切线PT,切点为T.已知PM=MO=ON=1.
(Ⅰ)求切线PT的长;
(Ⅱ)求$\frac{AM•BM}{AN•BN}$时值.

分析 (Ⅰ)利用切割线定理求切线PT的长;
(Ⅱ)证明△PAN∽△PBM,△PAM∽△PBN,即可求$\frac{AM•BM}{AN•BN}$时值.

解答 解:(Ⅰ)∵PM=MO=ON=1,
∴PT2=PM•PN=3,
∴PT=$\sqrt{3}$;
(Ⅱ)∵∠ABM=∠ANM,∠BPM=∠NPA,
∴△PAN∽△PBM,
∴$\frac{BM}{AN}=\frac{PB}{PN}$①,
∵∠PAM=∠PNB,∠PMA=∠PBN,
∴△PAM∽△PBN,
∴$\frac{AM}{BN}$=$\frac{PA}{PN}$②
由①②,可知$\frac{AM•BM}{AN•BN}$=$\frac{PA•BP}{P{N}^{2}}$=$\frac{PM•PN}{P{N}^{2}}$=$\frac{1}{3}$.

点评 本题考查切割线定理,考查三角形相似的判定与性质,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知α是第三象限角,化简f(x)=$\frac{sin(α-\frac{π}{2})cos(\frac{3}{2}π+α)tan(π-α)}{tan(-α-π)sin(-π-α)}$=-cosα.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图1,AB为圆O的直径,D为圆周上异于A,B的点,PB垂直于圆O所在的平面,BE⊥PA,BF⊥PD,垂足分别为E,F.已知AB=BP=2,直线PD与平面ABD所成角的正切值为$\sqrt{2}$.
(I)求证:BF⊥平面PAD;
(II)求三棱锥E-ABD的体积;
(III)在图2中,作出平面BEF与平面ABD的交线,并求平面BEF与平面ABD所成锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,△ABC中,以BC为直径的⊙O分别交AC,AB于点E,F,BE,CF交于点H.求证:
(Ⅰ)过C点平行于AH的直线是⊙O的切线;
(Ⅱ)BH•BE+CH•CF=BC2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在平面直角坐标系xOy中,以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2sinθ,θ∈[0,2π).
(1)求曲线C的直角坐标方程;
(2)若点D在曲线C上,求它到直线l:$\left\{\begin{array}{l}{x=\sqrt{3}t+\sqrt{3}}\\{y=-3t+2}\end{array}\right.$(t为参数,t∈R)的最短距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.正四棱锥P-ABCD的侧棱与底面边长相等均为a,此四棱锥的高为$\frac{\sqrt{2}}{2}$a;侧棱与底面所成的角$\frac{π}{4}$;侧面与底面所成的角arctan$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=2x2-ax+lnx在其定义域上不单调,则实数a的取值范围是(4,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若a>b,c>d,则不等式一定成立的是(  )
A.a-c>b-dB.a+c>b+dC.ac>bdD.|a|>|b|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知$\overrightarrow a$与$\overrightarrow b$的夹角为1200,且|${\overrightarrow a}$|=2,|${\overrightarrow b}$|=3.
(1)求$\overrightarrow a$•$\overrightarrow b$和|3$\overrightarrow a$+2$\overrightarrow b}$|;
(2)当x为何值时,x$\overrightarrow a$-$\overrightarrow b$与$\overrightarrow a$+3$\overrightarrow b$垂直?
(3)求$\overrightarrow a$与3$\overrightarrow a+2\overrightarrow b$的夹角.

查看答案和解析>>

同步练习册答案