精英家教网 > 高中数学 > 题目详情
(2013•青岛一模)已知函数f(x)对定义域R内的任意x都有f(x)=f(4-x),且当x≠2时其导函数f′(x)满足xf′(x)>2f′(x),若2<a<4则(  )
分析:由f(x)=f(4-x),可知函数f(x)关于直线x=2对称,由xf′(x)>2f′(x),可知f(x)在(-∞,2)与(2,+∞)上的单调性,从而可得答案.
解答:解:∵函数f(x)对定义域R内的任意x都有f(x)=f(4-x),
∴f(x)关于直线x=2对称;
又当x≠2时其导函数f′(x)满足xf′(x)>2f′(x)?f′(x)(x-2)>0,
∴当x>2时,f′(x)>0,f(x)在(2,+∞)上的单调递增;
同理可得,当x<2时,f(x)在(-∞,2)单调递减;
∵2<a<4,
∴1<log2a<2,
∴2<4-log2a<3,又4<2a<16,f(log2a)=f(4-log2a),f(x)在(2,+∞)上的单调递增;
∴f(log2a)<f(3)<f(2a).
故选C.
点评:本题考查抽象函数及其应用,考查导数的性质,判断f(x)在(-∞,2)与(2,+∞)上的单调性是关键,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•青岛一模)下列函数中周期为π且为偶函数的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•青岛一模)“k=
2
”是“直线x-y+k=0与圆“x2+y2=1相切”的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•青岛一模)函数y=21-x的大致图象为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•青岛一模)已知x,y满足约束条件
x2+y2≤4
x-y+2≥0
y≥0
,则目标函数z=-2x+y的最大值是
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•青岛一模)在平面直角坐标系xOy中,已知点A(-1,0),B(1,0),动点C满足:△ABC的周长为2+2
2
,记动点C的轨迹为曲线W.
(Ⅰ)求W的方程;
(Ⅱ)曲线W上是否存在这样的点P:它到直线x=-1的距离恰好等于它到点B的距离?若存在,求出点P的坐标;若不存在,请说明理由;
(Ⅲ)设E曲线W上的一动点,M(0,m),(m>0),求E和M两点之间的最大距离.

查看答案和解析>>

同步练习册答案